scispace - formally typeset
Search or ask a question
Author

Camelia S. Stancu

Bio: Camelia S. Stancu is an academic researcher from Romanian Academy. The author has contributed to research in topics: Cholesterol & Oxidative stress. The author has an hindex of 17, co-authored 49 publications receiving 1648 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention.
Abstract: The beneficial effects of statins are the result of their capacity to reduce cholesterol biosyntesis, mainly in the liver, where they are selectively distributed, as well as to the modulation of lipid metabolism, derived from their effect of inhibition upon HMG-CoA reductase. Statins have antiatherosclerotic effects, that positively correlate with the percent decrease in LDL cholesterol. In addition, they can exert antiatherosclerotic effects independently of their hypolipidemic action. Because the mevalonate metabolism generates a series of isoprenoids vital for different cellular functions, from cholesterol synthesis to the control of cell growth and differentiation, HMG-CoA reductase inhibition has beneficial pleiotropic effects. Consequently, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention, being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients. Independent of their hypolipidemic properties, statins interfere with events involved in bone formation and impede tumor cell growth.

714 citations

Journal ArticleDOI
TL;DR: Prolonged and/or repeated exposure to cardiovascular risk factors can ultimately exhaust the protective effect of the endogenous anti-inflammatory system within EC, and as a consequence, EC may progress to senescence, lose their integrity and detach into the circulation.
Abstract: Their strategic location between blood and tissue and their constitutive properties allow endothelial cells (EC) to monitor the transport of plasma molecules, by employing bidirectional receptor-mediated and receptor-independent transcytosis and endocytosis, and to regulate vascular tone, cellular cholesterol and lipid homeostasis. These cells are also involved in signal transduction, immunity, inflammation and haemostasis. Cardiovascular risk factors, such as hyperlipaemia/dyslipidaemia trigger the molecular machinery of EC to respond to insults by modulation of their constitutive functions followed by dysfunction and ultimately by injury and apoptosis. The gradual activation of EC consists initially in the modulation of two constitutive functions: (1) permeability, i.e. increased transcytosis of lipoproteins, and (2) biosynthetic activity, i.e. enhanced synthesis of the basement membrane and extracellular matrix. The increased transcytosis and the reduced efflux of β-lipoproteins (βLp) lead to their retention within the endothelial hyperplasic basal lamina as modified lipoproteins (MLp) and to their subsequent alteration (oxidation, glycation, enzymatic modifications). MLp generate chemoattractant and inflammatory molecules, triggering EC dysfunction (appearance of new adhesion molecules, secretion of chemokines, cytokines), characterised by monocyte recruitment, adhesion, diapedesis and residence within the subendothelium. In time, EC in the athero-prone areas alter their net negative surface charge, losing their non-thrombogenic ability, become loaded with lipid droplets and turn into foam cells. Prolonged and/or repeated exposure to cardiovascular risk factors can ultimately exhaust the protective effect of the endogenous anti-inflammatory system within EC. As a consequence, EC may progress to senescence, lose their integrity and detach into the circulation.

257 citations

Journal ArticleDOI
20 Oct 2015-PLOS ONE
TL;DR: Two circulating miRNAs that in association with some lipid metabolism biomarkers can be used as an additional tool to designate vulnerable CAD patients are identified.
Abstract: Small non-coding microRNAs (miRNAs) are implicated in gene regulation, including those involved in coronary artery disease (CAD). Our aim was to identify whether specific serum miRNAs present in the circulating lipoproteins (Lp) are associated with stable or vulnerable CAD patients. A cardiovascular disease-focused screening array was used to assess miRNAs distribution in sera collected from 95 CAD patients: 30 with stable angina (SA), 39 with unstable angina (UA), 26 at one month after myocardial infarction (MI) and 16 healthy control subjects. We found that miR-486, miR-92a and miR-122 presented the highest expression in CAD sera. These miRNA together with miR-125a, miR-146a and miR-33a were further individually analyzed by TaqMan assays. The results were consistent with PCR-array screening data that all of these miRNAs were significantly increased in CAD patients compared to controls. Using a binary logistic regression model, we established that miR-486 and miR-92a in association with some high-density lipoprotein (HDL) components can designate vulnerable CAD patients. Further, all classes of Lp were isolated from sera by density gradient ultracentrifugation. Analysis of the selected miRNAs in each Lp class showed that they were associated mainly with HDL, miR-486 and miR-92a having the highest levels. In UA and MI patients, miR-486 prevailed in HDL2, while miR-92a prevailed in HDL3, and their levels discriminate between stable and vulnerable CAD patients. We identified two circulating miRNAs that in association with some lipid metabolism biomarkers can be used as an additional tool to designate vulnerable CAD patients.

131 citations

Journal ArticleDOI
TL;DR: This review summarises recent advances in understanding the role of Lp in the induction of endothelial dysfunction and the initiation and progression of atherosclerotic lesions, and points out the potential targets for arresting or reversing this process.
Abstract: The endothelium is a key constituent of the vascular wall, being actively involved in maintaining the structural integrity and proper functioning of blood vessels. Hyperlipidemia, diabetes, hypertension, smoking and aging are important risk factors for the dysfunction of endothelial cells (EC). Circulating lipoproteins (Lp) synthesized and secreted from the intestine or liver have an important role in supplying peripheral tissues with fatty acids from triglyceride rich lipoproteins (TGRLp) for energy production or storage, and cholesterol from low density lipoproteins (LDL) or high density lipoproteins (HDL) for the synthesis of cellular membranes and steroid hormones. Under pathological conditions, Lp may suffer alterations in concentration and composition and become aggressors for EC. Modified LDL, remnant Lp, TGRLp lipolysis products, dysfunctional HDL are involved in the changes induced in EC morphology (reduced glycocalyx, overdeveloped endoplasmic reticulum, Golgi apparatus and basement membrane), loose intercellular junctions, increased oxidative and inflammatory stress, nitric oxide/redox imbalance, excess Lp transport and storage, as well as loss of anti-thrombotic properties, all of these being characteristics of endothelial dysfunction. Normal HDL are able to counteract the harmful effects of atherogenic Lp in EC but under persistent pathological conditions they lose the protective properties and become pro-atherogenic. This review summarises recent advances in understanding the role of Lp in the induction of endothelial dysfunction and the initiation and progression of atherosclerotic lesions. Its main focus is the antagonistic role of atherogenic Lp (LDL, VLDL, dysfunctional HDL) versus anti-atherogenic Lp (HDL), also pointing out the potential targets for arresting or reversing this process.

81 citations

Journal ArticleDOI
TL;DR: AGE‐LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro‐oxidant state (activation of NADPHox), lipid accumulation and a pro-inflammatory state (expression of MCP‐1) which may partly explain the contribution of AGE‐ LDL and hS MC to the accelerated atherosclerosis in diabetes.
Abstract: The major complication of diabetes is accelerated atherosclerosis, the progression of which entails complex interactions between the modified low-density lipoproteins (LDL) and the cells of the arterial wall. Advanced glycation end product-modified-LDL (AGE-LDL) that occurs at high rate in diabetes contributes to diabetic atherosclerosis, but the underlying mechanisms are not fully understood. The aim of this study was to assess the direct effect of AGE-LDL on human vascular smooth muscle cells (hSMC) dysfunction. Cultured hSMC incubated (24 hrs) with human AGE-LDL, native LDL (nLDL) or oxidized LDL (oxLDL) were subjected to: (i) quantification of the expression of the receptors for modified LDL and AGE proteins (LRP1, CD36, RAGE) and estimation of lipid loading, (ii) determination of NADPH oxidase activity and reactive oxygen species (ROS) production and (iii) evaluation of the expression of monocyte chemoattractant protein-1 (MCP-1). The results show that exposure of hSMC to AGE-LDL (compared to nLDL) induced: (a) increased NADPH oxidase activity (30%) and ROS production (28%) by up-regulation of NOX1, NOX4, p22phox and p67phox expression, (b) accumulation of intracellular cholesteryl esters, (c) enhanced gene expression of LRP1 (160%) and CD36 (35%), and protein expression of LRP1, CD36 and RAGE, (d) increased MCP-1 gene expression (160%) and protein secretion (300%) and (e) augmented cell proliferation (30%). In conclusion, AGE-LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro-oxidant state (activation of NADPHox), lipid accumulation and a pro-inflammatory state (expression of MCP-1). These results may partly explain the contribution of AGE-LDL and hSMC to the accelerated atherosclerosis in diabetes.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Evidence indicates that proteins controlling bone mineralization are also involved in the regulation of vascular calcification, a complex, regulated process of biomineralization resembling osteogenesis, which is widely used as a clinical indicator of atherosclerosis.
Abstract: Vascular calcification, long thought to result from passive degeneration, involves a complex, regulated process of biomineralization resembling osteogenesis. Evidence indicates that proteins controlling bone mineralization are also involved in the regulation of vascular calcification. Artery wall cells grown in culture are induced to become osteogenic by inflammatory and atherogenic stimuli. Furthermore, osteoclast-like cells are found in calcified atherosclerotic plaques, and active resorption of ectopic vascular calcification has been demonstrated. In general, soft tissue calcification arises in areas of chronic inflammation, possibly functioning as a barrier limiting the spread of the inflammatory stimulus. Atherosclerotic calcification may be one example of this process, in which oxidized lipids are the inflammatory stimulus. Calcification is widely used as a clinical indicator of atherosclerosis. It progresses nonlinearly with time, following a sigmoid-shaped curve. The relationship between calcification and clinical events likely relates to mechanical instability introduced by calcified plaque at its interface with softer, noncalcified plaque. In general, as calcification proceeds, interface surface area increases initially, but eventually decreases as plaques coalesce. This phenomenon may account for reports of less calcification in unstable plaque. Vascular calcification is exacerbated in certain clinical entities, including diabetes, menopause, and osteoporosis. Mechanisms linking them must be considered in clinical decisions. For example, treatments for osteoporosis may have unanticipated effects on vascular calcification; the converse also applies. Further understanding of processes governing vascular calcification may yield new therapeutic options for vascular disease.

838 citations

Journal ArticleDOI
TL;DR: Components of the innate and adaptive immune response are reviewed, data from many groups are discussed that suggest that common forms of hypertension are immune mediated, and a working hypothesis of how signals from the central nervous system trigger an immune response that causes hypertension is provided.
Abstract: Aprominent pathology textbook used in the United States includes an image illustrating the renal histopathology caused by malignant hypertension. The legend describes striking “onion skin” changes of a renal arteriole. Curiously, a sea of mononuclear inflammatory cells surrounding this arteriole is overlooked both in the legend and in the related text. Moreover, nothing regarding inflammation or immune reactions is discussed. This lack of attention to inflammatory cells is, however, not surprising. Although many experimental studies have implicated inflammation in hypertension, these have largely been performed in experimental animals; there is no proof that inflammation contributes to human hypertension. In fact, some anti-inflammatory or immune-suppressing drugs (eg, nonsteroidal anti-inflammatory drugs and cyclosporine) paradoxically cause hypertension in humans, likely via off-target effects. Often the term “inflammation” is used in the context of cardiovascular disease as a catchall referring to nonspecific phenomena, such as elevation of C-reactive protein or the presence of macrophages in a tissue. Most clinicians and investigators find this vague and difficult to understand. Even more puzzling is that many studies now implicate the adaptive immune response, and in particular, lymphocytes, in hypertension and vascular disease. Traditionally, bacterial, viral, or tumor antigens activate this arm of immune defense. As such, it has been hard to imagine how adaptive immunity could be involved in a disease such as hypertension. In this article, we will attempt to address some of these puzzling questions. We will briefly review components of the innate and adaptive immune response, discuss data from many groups, including our own, that suggest that common forms of hypertension are immune mediated, and provide a working hypothesis of how signals from the central nervous system trigger an immune response that causes hypertension. ### General Concepts Regarding Inflammation and Immunity #### Innate Immunity The first line of defense against pathogens is the innate immune response. Important components of this system include epithelial …

783 citations

Journal ArticleDOI
TL;DR: Being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention.
Abstract: The beneficial effects of statins are the result of their capacity to reduce cholesterol biosyntesis, mainly in the liver, where they are selectively distributed, as well as to the modulation of lipid metabolism, derived from their effect of inhibition upon HMG-CoA reductase. Statins have antiatherosclerotic effects, that positively correlate with the percent decrease in LDL cholesterol. In addition, they can exert antiatherosclerotic effects independently of their hypolipidemic action. Because the mevalonate metabolism generates a series of isoprenoids vital for different cellular functions, from cholesterol synthesis to the control of cell growth and differentiation, HMG-CoA reductase inhibition has beneficial pleiotropic effects. Consequently, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention, being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients. Independent of their hypolipidemic properties, statins interfere with events involved in bone formation and impede tumor cell growth.

714 citations

Journal ArticleDOI
TL;DR: This data indicates that glycation endproducts are a viable source of disease progression in elderly people with diabetes and the use of these products should not be considered a substitute for medical treatment.
Abstract: Bio-reactive advanced glycation endproducts (AGE) alter the structure and function of molecules in biological systems and increase oxidative stress. These adverse effects of both exogenous and endogenously derived AGE have been implicated in the pathogenesis of diabetic complications and changes associated with ageing including atherosclerosis, renal, eye and neurological disease. Specific AGE receptors and nonreceptor mechanisms contribute to these processes but also assist in the removal and degradation of AGE. The final disposal of AGE depends on renal clearance. Promising pharmacologic strategies to prevent AGE formation, reduce AGE toxicity, and/or inactivate AGE are under investigation.

701 citations

Journal ArticleDOI
TL;DR: This review aims to provide an overview of the links between oxidative stress, vascular inflammation, endothelial dysfunction and cardiovascular risk factors, importantly focusing on blood pressure regulation and atherosclerosis.

701 citations