scispace - formally typeset
Search or ask a question
Author

Camille C. Hanot

Bio: Camille C. Hanot is an academic researcher from Auburn University. The author has contributed to research in topics: Cytotoxicity & Nanotoxicology. The author has an hindex of 1, co-authored 1 publications receiving 38 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles, emphasizing the importance of surface coatings when engineering nanoparticles for biomedical applications.
Abstract: Superparamagnetic iron-oxide nanoparticles (SPIONs) show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells). We evaluated the effect of particle diameter (50 and 100 nm) and polyethylene glycol (PEG) chain length (2k, 5k and 20k Da) on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS). Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications.

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways.
Abstract: Targeted delivery combined with controlled drug release has a pivotal role in the future of personalized medicine. This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways. Attention is devoted to the tailored conjugation of targeting ligands (e.g., enzymes, antibodies, peptides) to drug carrier systems. Similarly, the approaches toward controlled drug release are discussed. Various polymer–drug conjugates based, for example, on polyethylene glycol (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric micelles, and nanoparticle carriers are explored with respect to absorption, distribution, metabolism, and excretion (ADME scheme) of administrated drug. Design and structure of superparamagnetic iron oxide nanoparticles (SPION) and condensed magnetic clusters are classified according to the mechanism of noncovalent drug loading involving...

1,241 citations

Journal ArticleDOI
TL;DR: It is shown that influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation.

153 citations

Journal ArticleDOI
TL;DR: A label-free method for assessing nanoparticle toxicity using the rapid (less than 30 minutes) measurement of ROS with a novel nanoelectrode is developed.
Abstract: Iron oxide nanoparticles have attracted a great deal of research interest and have been widely used in bioscience and clinical research including as contrast agents for magnetic resonance imaging, hyperthermia and magnetic field assisted radionuclide therapy. It is therefore important to develop methods, which can provide high-throughput screening of biological responses that can predict toxicity. The use of nanoelectrodes for single cell analysis can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. We have developed a new method for in vitro study of the toxicity of magnetic nanoparticles (NP) based on the measurement of intracellular reactive oxygen species (ROS) by a novel nanoelectrode. Previous studies have suggested that ROS generation is frequently observed with NP toxicity. We have developed a stable probe for measuring intracellular ROS using platinized carbon nanoelectrodes with a cavity on the tip integrated into a micromanipulator on an upright microscope. Our results show a significant difference for intracellular levels of ROS measured in HEK293 and LNCaP cancer cells before and after exposure to 10 nm size iron oxide NP. These results are markedly different from ROS measured after cell incubation with the same concentration of NP using standard methods where no differences have been detected. In summary we have developed a label-free method for assessing nanoparticle toxicity using the rapid (less than 30 minutes) measurement of ROS with a novel nanoelectrode.

63 citations

Book ChapterDOI
TL;DR: This chapter analyzes the physico-chemical properties of the most used nanoparticles, the way they enter the living organism and their cytoxicity mechanisms at cellular exposure level and the current state of nanoparticles risk assessment.
Abstract: The wide use of engineered nanomaterials in many fields, ranging from biomedical, agriculture, environment, cosmetic, urged the scientific community to understand the processes behind their potential toxicity, in order to develop new strategies for human safety. As a matter of fact, there is a big discrepancy between the increased classes of nanoparticles and the consequent applications versus their toxicity assessment. Nanotoxicology is defined as the science that studies the effects of engineered nanodevices and nanostructures in living organisms. This chapter analyzes the physico-chemical properties of the most used nanoparticles, the way they enter the living organism and their cytoxicity mechanisms at cellular exposure level. Moreover, the current state of nanoparticles risk assessment is reported and analyzed.

59 citations

Journal ArticleDOI
TL;DR: This review aims to provide an overview of the challenges that inorganic nanoparticles face regarding their stability, toxicity, and biodegradability, as well as the strategies that have been proposed to overcome them.
Abstract: Introduction: Stimuli-responsive nanomaterials for cancer therapy have attracted much interest recently due to their potential for improving the current standard of care. Different types of inorganic nanoparticles are widely employed for the development of these strategies, but in some cases safety concerns hinder their clinical translation. This review aims to provide an overview of the challenges that inorganic nanoparticles face regarding their stability, toxicity, and biodegradability, as well as the strategies that have been proposed to overcome them. Areas covered: The available information about the in vitro and in vivo biocompatibility, as well as the biodegradability of the following nanoparticles, is presented and discussed: superparamagnetic iron oxide nanoparticles, gold nanoparticles, graphene and mesoporous nanoparticles made of silicon or silicon oxide. The toxicology of inorganic nanoparticles is greatly affected by many physicochemical parameters, and their surface modification emerges as the main intervention to improve their biocompatibility and tailor their performance for specific biomedical applications. Expert opinion: Even though many different studies have been performed regarding the biological behavior of inorganic nanoparticles, long-term in vivo data is still scarce, limiting our capacity to evaluate the proposed nanomaterials for clinical use. The role of biodegradability in different therapeutic contexts is also discussed.

54 citations