scispace - formally typeset
Search or ask a question
Author

Camilynn I. Brannan

Bio: Camilynn I. Brannan is an academic researcher from University of Florida. The author has contributed to research in topics: Genomic imprinting & Gene. The author has an hindex of 31, co-authored 42 publications receiving 10110 citations. Previous affiliations of Camilynn I. Brannan include National Institutes of Health & University of Cincinnati Academic Health Center.

Papers
More filters
Journal ArticleDOI
26 Mar 1992-Nature
TL;DR: The Ipr mice develop lymphadenopathy and suffer from a systemic lupus erythematosus-like autoimmune disease, indicating an important role for Fas antigen in the negative selection of autoreactive T cells in the thymus.
Abstract: Fas antigen is a cell-surface protein that mediates apoptosis. It is expressed in various tissues including the thymus and has structural homology with a number of cell-surface receptors, including tumour necrosis factor receptor and nerve growth factor receptor. Mice carrying the lymphoproliferation (lpr) mutation have defects in the Fas antigen gene. The lpr mice develop lymphadenopathy and suffer from a systemic lupus erythematosus-like autoimmune disease, indicating an important role for Fas antigen in the negative selection of autoreactive T cells in the thymus.

2,988 citations

Journal Article
TL;DR: Interspecific backcross analysis indicated that the gene coding for the Fas antigen is in the distal region of mouse chromosome 19, and was significantly induced by treatment with IFN-gamma but not byIFN-alpha/beta.
Abstract: The cell surface Fas antigen is a membrane-associated polypeptide which can mediate apoptosis. cDNA clones encoding the Fas antigen were isolated from a cDNA library constructed with mRNA from the mouse macrophage cell line BAM3. The nucleotide sequence and the deduced amino acid sequence of the mouse Fas antigen were 58.5 and 49.3% identical, respectively, to the corresponding sequences of human Fas antigen cDNA. The mouse Fas antigen consists of 306 amino acids with a calculated Mr of 34,971 and contains a single transmembrane domain which divides the molecule into extracellular and cytoplasmic domains. A 2.1-kb mRNA coding for the Fas antigen was detected in the mouse thymus, heart, liver, and ovary but not in brain and spleen. The expression of the Fas antigen gene in mouse fibroblast L929 and macrophage BAM3 cell lines was significantly induced by treatment with IFN-gamma but not by IFN-alpha/beta. Interspecific backcross analysis indicated that the gene coding for the Fas antigen is in the distal region of mouse chromosome 19.

821 citations

Journal ArticleDOI
TL;DR: These results identify new roles for NF1 in development and indicate that some of the abnormal growth phenomena observed in NF1 patients can be recapitulated in neurofibromin-deficient mice.
Abstract: The neurofibromatosis (NF1) gene shows significant homology to mammalian GAP and is an important regulator of the ras signal transduction pathway. To study the function of NF1 in normal development and to try and develop a mouse model of NF1 disease, we have used gene targeting in ES cells to generate mice carrying a null mutation at the mouse Nf1 locus. Although heterozygous mutant mice, aged up to 10 months, have not exhibited any obvious abnormalities, homozygous mutant embryos die in utero. Embryonic death is likely attributable to a severe malformation of the heart. Interestingly, mutant embryos also display hyperplasia of neural crest-derived sympathetic ganglia. These results identify new roles for NF1 in development and indicate that some of the abnormal growth phenomena observed in NF1 patients can be recapitulated in neurofibromin-deficient mice

609 citations

Journal ArticleDOI
TL;DR: Three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human are identified, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS.
Abstract: We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11–q13, within a region implicated in the Prader–Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2′-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA.

606 citations

Journal ArticleDOI
02 Jul 1993-Cell
TL;DR: The recombinant human ligand enhances the proliferation of CD3-activated T cells yet induces differential responses, including cell death, in several CD30+ lymphoma-derived clones.

569 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1993-Science
TL;DR: A role for TNF-alpha in obesity and particularly in the insulin resistance and diabetes that often accompany obesity is indicated.
Abstract: Tumor necrosis factor-alpha (TNF-alpha) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-alpha messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-alpha protein was also elevated locally and systemically. Neutralization of TNF-alpha in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-alpha in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

7,347 citations

Journal ArticleDOI
10 Mar 1995-Science
TL;DR: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death, and recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases.
Abstract: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death. Although much is known about the control of cell proliferation, less is known about the control of cell death. Physiologic cell death occurs primarily through an evolutionarily conserved form of cell suicide termed apoptosis. The decision of a cell to undergo apoptosis can be influenced by a wide variety of regulatory stimuli. Recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases, including cancer, viral infections, autoimmune diseases, neurodegenerative disorders, and AIDS (acquired immunodeficiency syndrome). Treatments designed to specifically alter the apoptotic threshold may have the potential to change the natural progression of some of these diseases.

6,462 citations

Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,760 citations

Journal ArticleDOI
07 Feb 1997-Cell
TL;DR: This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, and Culture of Japan and by a Research Grant from the Princess Takamatsu Cancer Research Fund, and performed in part through Special Coordination Funds of the Science and Technology Agency of the Japanese Government.

5,054 citations

Journal ArticleDOI
TL;DR: The possibility that the immune system does not care about self and non-self, that its primary driving force is the need to detect and protect against danger, and that it does not do the job alone, but receives positive and negative communications from an extended network of other bodily tissues is discussed.
Abstract: For many years immunologists have been well served by the viewpoint that the immune system's primary goal is to discriminate between self and non-self. I believe that it is time to change viewpoints and, in this essay, I discuss the possibility that the immune system does not care about self and non-self, that its primary driving force is the need to detect and protect against danger, and that it does not do the job alone, but receives positive and negative communications from an extended network of other bodily tissues.

4,825 citations