scispace - formally typeset
Search or ask a question
Author

Can Yang

Bio: Can Yang is an academic researcher from Beijing Institute of Technology. The author has contributed to research in topics: Organic solar cell & Polymer solar cell. The author has an hindex of 3, co-authored 8 publications receiving 64 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a dissymmetric backbone and selenophene substitution on the central core was used for the synthesis of symmetric or disymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) with different numbers of selenopshene.
Abstract: A dissymmetric backbone and selenophene substitution on the central core was used for the synthesis of symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) with different numbers of selenophene. From S-YSS-Cl to A-WSSe-Cl and to S-WSeSe-Cl, a gradually red-shifted absorption and a gradually larger electron mobility and crystallinity in neat thin film was observed. A-WSSe-Cl and S-WSeSe-Cl exhibit stronger and tighter intermolecular π-π stacking interactions, extra S⋅⋅⋅N non-covalent intermolecular interactions from central benzothiadiazole, better ordered 3D interpenetrating charge-transfer networks in comparison with thiophene-based S-YSS-Cl. The dissymmetric A-WSSe-Cl-based device has a PCE of 17.51 %, which is the highest value for selenophene-based NF-SMAs in binary polymer solar cells. The combination of dissymmetric core and precise replacement of selenophene on the central core is effective to improve Jsc and FF without sacrificing Voc .

89 citations

Journal ArticleDOI
TL;DR: In this article, two new hetero-dihalogenated terminals (FCl-IC and FBr-IC) with a pair of fluorine/chlorine or fluorine-bromine at one terminal and three NFAs (Y-BO-FCl, Y-BO -FBr, and YBO-ClBr) with three heterogeneous terminals were synthesized in a general process for OSCs.
Abstract: Despite dihalogenation of terminals is an effective strategy to achieve efficient nonfullerene acceptors (NFAs)-based organic solar cells (OSCs), hetero-dihalogenated terminals are quite difficult to obtain. Here, we firstly synthesized two new hetero-dihalogenated terminals (FCl-IC and FBr-IC) with a pair of fluorine/chlorine or fluorine/bromine at one terminal and three NFAs (Y-BO-FCl, Y-BO-FBr, and Y-BO-ClBr) with three hetero-dihalogenated terminals (FCl-IC, FBr-IC, and ClBr-IC) in a general process for OSCs, respectively. Y-BO-FCl neat film presents slightly lower energy level in comparison with those of Y-BO-FBr and Y-BO-ClBr. We, for the first time, obtained the single crystals of hetero-dihalogenated NFAs. From Y-BO-ClBr single crystal to fluorinated acceptor single crystals, the crystal systems and the intermolecular packing motifs have been significantly improved. The crystallographic and theoretical analysis indicate that Y-BO-FCl exhibits the most planar molecular geometry, the smallest intermolecular packing distance and the largest π−π electronic coupling among these acceptors. Moreover, PM6:Y-BO-FCl blend films present more order face-on orientation crystallinity, more suitable fiber-like phase separation, higher and more balanced charge mobility, weaker charge recombination in comparison with those of PM6:Y-BO-FBr and PM6:Y-BO-ClBr. As a result, up to remarkable PCE of 17.52% with enhanced FF of ca. 78% was achieved in binary Y-BO-FCl:PM6 devices compared to that of PM6:Y-BO-FBr (16.47%) and PM6:Y-BO-ClBr (13.61%), which is the highest efficiency for the hetero-halogenated NFAs-based OSCs. Our investigations demonstrate that fluorine/chlorine hetero-dihalogenated terminal is a new and effective synergistic strategy to induce significant difference in single crystallography and achieve high-performance hetero-halogenated NFAs-based OSCs.

63 citations

Journal ArticleDOI
TL;DR: In this article, an outmost selenophene-functionalized electron-rich central core (indacenodithieno[3,2-b]selenophene) and a new non-halogenated A-D-A architecture non-fullerene small molecular acceptor (NF-SMA) (TSeTIC) based on indacenhodithienono[ 3,2b]elenophenophene as the central unit and thiophene-fused IC as a terminal group was designed and synthes
Abstract: An outmost selenophene-functionalized electron-rich central core (indacenodithieno[3,2-b]selenophene) and a new non-halogenated A–D–A architecture non-fullerene small molecular acceptor (NF-SMA) (TSeTIC) based on indacenodithieno[3,2-b]selenophene as the central unit and thiophene-fused IC as a terminal group was designed and synthesized for high performance organic solar cells. In contrast to the similar NF-SMA (TTTIC) with an indacenodithieno[3,2-b]thiophene unit, TSeTIC exhibited a stronger and red-shifted absorption spectrum, higher highest occupied molecular orbital (HOMO) energy level, and enhanced electron mobility in neat thin films. Furthermore, a TSeTIC/PM6-based device presented higher hole/electron mobility, better phase separation features with favorable morphology, and higher charge dissociation and collection efficiency than a TTTIC/PM6-based device, resulting in remarkably improved Jsc and FF without sacrificing the Voc. Therefore, compared to the best PCE of 12.05% with an energy loss (Eloss) of 0.64 eV for the PM6/TTTIC device, the optimized PM6/TSeTIC device yields a significantly higher PCE of 13.71% with a higher FF of 75.9% and decreased Eloss of 0.60 eV. It is worth noting that the excellent PCE of 13.71% is the highest recorded for A–D–A structural NF-SMAs with thiophene-containing terminal groups for binary organic solar cells. These results demonstrate that the synergistic strategy of using an indacenodithieno[3,2-b]selenophene core unit and thiophene-containing IC end group is a promising avenue to enhance the PCE of non-halogenated NF-SMAs with high Voc and FF as well as low Eloss.

45 citations

Journal ArticleDOI
06 May 2020-Small
TL;DR: The results demonstrate that the subtle modification of A2 unit would result in lower trap-assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT-4Cl blend films.
Abstract: Here, a pair of A1 -D-A2 -D-A1 unfused ring core-based nonfullerene small molecule acceptors (NF-SMAs), BO2FIDT-4Cl and BT2FIDT-4Cl is synthesized, which possess the same terminals (A1 ) and indacenodithiophene unit (D), coupling with different fluorinated electron-deficient central unit (difluorobenzoxadiazole or difluorobenzothiadiazole) (A2 ). BT2FIDT-4Cl exhibits a slightly smaller optical bandgap of 1.56 eV, upshifted highest occupied molecular orbital energy levels, much higher electron mobility, and slightly enhanced molecular packing order in neat thin films than that of BO2FIDT-4Cl. The polymer solar cells (PSCs) based on BT2FIDT-4Cl:PM7 yield the best power conversion efficiency (PCE) of 12.5% with a Voc of 0.97 V, which is higher than that of BO2FIDT-4Cl-based devices (PCE of 10.4%). The results demonstrate that the subtle modification of A2 unit would result in lower trap-assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT-4Cl blend films. It is worth mentioning that the PCE of 12.5% is the highest value in nonfused ring NF-SMA-based binary PSCs with high Voc over 0.90 V. These results suggest that appropriate modulation of the quinoid electron-deficient central unit is an effective approach to construct highly efficient unfused ring NF-SMAs to boost PCE and Voc simultaneously.

28 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional electron-rich fused-ring moiety (ClBDSe) based on benzo[1,2-b:4,5-b']diselenophene is synthesized.
Abstract: A two-dimensional electron-rich fused-ring moiety (ClBDSe) based on benzo[1,2-b:4,5-b']diselenophene is synthesized. Three copolymers (PBDT-Se, PBDSe-T, and PBDSe-Se) are obtained by manipulating the connection types and number of selenophene units on the conjugated main chains with two 2D fused-ring units and two different π-bridges, respectively. In comparison with PBDT-Se and PBDSe-Se, PBDSe-T with benzo[1,2-b:4,5-b']diselenophene unit and thiophene π-bridge exhibits the deepest HOMO energy level and the strongest crystallinity in neat films. The PBDSe-T:Y6 blend film exhibits the best absorption complementarity, the most distinctive face-on orientation with proper phase separation, the highest carrier mobilities, and the lowest charge recombination among three blend films. Finally, the PBDSe-T:Y6-based device delivers an impressive power conversion efficiency (PCE) of 14.50 %, which is higher than those of PBDT-Se:Y6 and PBDSe-Se:Y6. Moreover, a decent open-circuit voltage (Voc ) of 0.89 V with a remarkably small energy loss of 0.44 eV is achieved for PBDSe-T:Y6. The efficiency of 14.50 % is the highest value for selenophene-containing copolymer-based binary organic solar cells (OSCs). This study provides evidence that introduction of 2D-benzo[1,2-b:4,5-b']diselenophene as a fused electron-rich unit with π-bridging into copolymeric donors is a valid strategy for providing high Voc and excellent PCE simultaneously in selenophene-based OSCs.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , a record power conversion efficiency of over 19% was achieved in planar-mixed heterojunction (PMHJ) organic solar cells (OSCs) by adopting the asymmetric selenium substitution strategy in making a pseudosymmetric electron acceptor, BS3TSe•4F.
Abstract: A record power conversion efficiency (PCE) of over 19% is realized in planar‐mixed heterojunction (PMHJ) organic solar cells (OSCs) by adopting the asymmetric selenium substitution strategy in making a pseudosymmetric electron acceptor, BS3TSe‐4F. The combined molecular asymmetry with more polarizable selenium substitution increases the dielectric constant of the D18/BS3TSe‐4F blend, helping lower the exciton binding energy. On the other hand, dimer packing in BS3TSe‐4F is facilitated to enable free charge generation, helping more efficient exciton dissociation and lowering the radiative recombination loss (ΔE2) of OSCs. As a result, PMHJ OSCs based on D18/BS3TSe‐4F achieve a PCE of 18.48%. By incorporating another mid‐bandgap acceptor Y6‐O into D18/BS3TSe‐4F to form a ternary PMHJ, a higher open‐circuit voltage (VOC) can be achieved to realize an impressive PCE of 19.03%. The findings of using pseudosymmetric electron acceptors in enhancing device efficiency provides an effective way to develop highly efficient acceptor materials for OSCs.

152 citations

Journal ArticleDOI
TL;DR: This review has discussed the challenges in anticipating the data driven material design, such as the complexity metric of organic solar cells, diversity of chemical structures and necessary programming ability and proposed some suggestions that can enhance the usefulness of machine learning for organic solar cell research enterprises.
Abstract: Machine learning (ML) is a field of computer science that uses algorithms and techniques for automating solutions to complex problems that are hard to program using conventional programming methods. Owing to the chemical versatility of organic building blocks, a large number of organic semi-conductors have been used for organic solar cells. Selecting a suitable organic semi-conductor is like searching for a needle in a haystack. Data-driven science, the fourth paradigm of science, has the potential to guide experimentalists to discover and develop new high-performance materials. The last decade has seen impressive progress in materials informatics and data science; however, data-driven molecular design of organic solar cell materials is still challenging. The data-analysis capability of machine learning methods is well known. This review is written about the use of machine learning methods for organic solar cell research. In this review, we have outlined the basics of machine learning and common procedures for applying machine learning. A brief introduction on different classes of machine learning algorithms as well as related software and tools is provided. Then, the current research status of machine learning in organic solar cells is reviewed. We have discussed the challenges in anticipating the data driven material design, such as the complexity metric of organic solar cells, diversity of chemical structures and necessary programming ability. We have also proposed some suggestions that can enhance the usefulness of machine learning for organic solar cell research enterprises.

150 citations

Journal ArticleDOI
TL;DR: The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices as discussed by the authors .
Abstract: Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.

113 citations

Journal ArticleDOI
TL;DR: A time and money efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT based organic solar cells is reported, selected using machine learning predicted Hansen solubility parameters.
Abstract: The power conversion efficiency (PCE) of organic solar cells (OSCs) is increasing continuously, however, commercialization is far from being achieved due to the very high synthetic cost of materials and toxic solvents. Poly(3-hexylthiophene) (P3HT) is the cheapest donor, however, its PCE has remained relatively low for a long time. Recently, a PCE of over 9% has been reported. This study was performed with the aim of predicting the performance of P3HT based organic solar cells through statistical data fit, bypassing the complexity of OSC devices. For this purpose, we have used machine learning to explore data from previously reported devices. Molecular descriptors were used to train machine learning models. We have identified the descriptors that have a positive impact on the PCE. Various machine learning models are used to classify non-fullerene acceptors (NFAs) on the basis of their PCEs. We have also developed various regression models to predict the PCE. The support vector machine showed the best predictive capability. Machine learning models were also trained to predict the energy levels. Over 3000 NFAs were designed using high performing and easily synthesizable building blocks. For virtual screening of new molecules, energy levels were predicted through the already trained model. Acceptors with suitable energy levels matching with those of P3HT were selected. The PCEs of these selected acceptors were also predicted. 87 acceptors with >7.5% PCE were selected. Green solvents were selected on the basis of Hansen solubility parameters predicted using machine learning. Green solvent-containing organic solar cells have better scope of commercialization due to their environment-friendly nature. This study will pave the way for the cheap and fast design of materials for efficient P3HT-based organic solar cells. This study will help to select potential candidates and speed up the breakthroughs.

109 citations

Journal ArticleDOI
TL;DR: In this article, a facile strategy for third component selection in non-fullerene acceptor-based ternary OSCs was proposed, which can successfully function as the third component.
Abstract: The ternary strategy has been proved to be an efficient approach to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). However, little attention has been paid to deriving the general design principle for selecting an appropriate third component. Herein, we proposed a facile strategy for third-component selection in non-fullerene acceptor-based ternary OSCs. By sharing the same central unit with the host acceptor and a single fluorinated end group, the designed non-fullerene acceptor can successfully function as the third component in ternary OSCs. Following this design principle, we synthesized the BTP-F acceptor, and then incorporated it into the PM6:BTP-eC9 blend. Encouragingly, the optimized ternary OSC exhibited a high PCE of 18.45%, which is among the highest efficiency values reported for OSCs so far. In addition, the PM6:BTP-eC9:BTP-F ternary OSC displayed superior stability compared to the host system. Systematic characterizations reveal that the introduction of BTP-F into the ternary blend increases the charge transport, improves the active-layer morphology and reduces non-radiative recombination, therefore leading to a simultaneously enhanced short-circuit current, fill factor and open-circuit voltage. Furthermore, the Y6-F and L8-BO-F acceptors have been also synthesized as the third components in ternary OSCs. Compared with the binary devices, the ternary devices all exhibited improved PCEs. These results confirm the general application of the strategy we proposed, which provides a new way to further improve the efficiency of ternary OSCs.

91 citations