scispace - formally typeset
Search or ask a question
Author

Can Zhu

Bio: Can Zhu is an academic researcher from Iowa State University. The author has contributed to research in topics: Composite number & Flexural strength. The author has an hindex of 1, co-authored 2 publications receiving 284 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a 1.0-wt.% graphene reinforced aluminum 6061 (Al6061) composite was synthesized to investigate the effects of graphene dispersion by ball milling technique.
Abstract: A 1.0 wt.% graphene reinforced aluminum 6061 (Al6061) composite was synthesized to investigate the effects of graphene dispersion by ball milling technique. The Al6061 powder and graphene were ball milled at different milling times. The composites were then synthesized by hot compaction in the semi-solid regime of the Al6061. A three point bending test was performed to characterize the mechanical properties of the composite. The ball milled powder and the fracture surfaces of the composites were analyzed using the scanning electron microscopy. A maximum enhancement of 47% in flexural strength was observed when compared with the reference Al6061 processed at the same condition.

340 citations

Journal ArticleDOI
TL;DR: In this paper , a simulation method that consists of a global two-dimensional computational fluid dynamic (CFD) model, a local three-dimensional CFD model near the growth front, and a kinetics model that describes the movement of macrosteps on the crystal surface is proposed.
Abstract: In the solution growth of the SiC crystal, macrosteps with sufficient height on an off-axis substrate are required to reduce defects and achieve a high-quality grown layer. However, over-developed macrosteps can induce new defects and adversely affect the crystal quality. To better understand and control the behavior of macrosteps corresponding to the control parameters of the growth system, a simulation method that consists of a global two-dimensional computational fluid dynamic (CFD) model, a local three-dimensional CFD model near the growth front, and a kinetics model that describes the movement of macrosteps on the crystal surface is proposed. The simulation method is first applied to investigate the effect of the crystal rotation speed on macrostep morphology. Although the results indicate that a higher crystal rotation speed results in less step bunching, constantly rotating the crystal in one direction is demonstrated to be incapable of yielding a uniform macrostep distribution on the whole surface. Accordingly, a sophisticated control pattern is designed by periodically switching the flow direction underneath the crystal surface, where the proposed simulation method is critical to determine detailed control-parameter values. When the control pattern suggested by the simulation is used, a grown crystal with a uniform macrostep morphology and ideal step height on the whole surface is obtained in the practical experiment.

2 citations

Proceedings ArticleDOI
10 Jun 2013
TL;DR: In this article, an Al6061-graphene composite was investigated with 1.0 wt.% graphene reinforcement and a maximum enhancement of 47% in the flexural strength was observed.
Abstract: Graphene is a promising material as a reinforcing element for high-strength, lightweight metal composites due to its extraordinary mechanical properties and low density. In this study, Al6061–graphene composite was investigated with 1.0 wt.% graphene reinforcement. The graphene was manufactured by the modified Brodie’s method. The Al6061 powder and graphene flakes were ball milled at different milling times (10, 30, 60, and 90 min). The composite was then synthesized by hot compaction in the semi-solid regime of the Al6061. Three point bending test was performed to characterize the mechanical properties of the composites. The ball milled powder and the fracture surfaces of the composites were investigated using the scanning electron microscopy (SEM). The results were compared with a reference Al6061 without any graphene reinforcement. For the Al6061-1.0 wt.% graphene composites, a maximum enhancement of 47% in the flexural strength was observed when compared with the reference Al6061 processed at the same condition.Copyright © 2013 by ASME

1 citations

Journal ArticleDOI
TL;DR: The capability of transfer learning to predict geometric evolution in an unsteady silicon carbide (SiC) solution growth system based on a small amount of data is investigated and the accuracy is stably inherited through successive time steps.
Abstract: Real‐time prediction and dynamic control systems that can adapt to an unsteady environment are necessary for material fabrication processes, especially crystal growth. Recent studies have demonstrated the effectiveness of machine learning in predicting an unsteady crystal growth process, but its wider application is hindered by the large amount of training data required for sufficient accuracy. To address this problem, this study investigates the capability of transfer learning to predict geometric evolution in an unsteady silicon carbide (SiC) solution growth system based on a small amount of data. The performance of transferred models is discussed regarding the effect of the transfer learning method, training data amount, and time step length. The transfer learning strategy yields the same accuracy as that of training from scratch but requires only 20% of the training data. The accuracy is stably inherited through successive time steps, which demonstrates the effectiveness of transfer learning in reducing the required amount of training data for predicting evolution in an unsteady crystal growth process. Moreover, the transferred models trained with relatively more data (no more than 100%) further improve the accuracy inherited from the source model through multiple time steps, which broadens the application scope of transfer learning.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on the recent development in mechanical and tribological behavior of self-lubricating metallic nanocomposites reinforced by carbonous nanomaterials such as CNT and graphene.
Abstract: Rapid innovation in nanotechnology in recent years enabled development of advanced metal matrix nanocomposites for structural engineering and functional devices. Carbonous materials, such as graphite, carbon nanotubes (CNT's), and graphene possess unique electrical, mechanical, and thermal properties. Owe to their lubricious nature, these carbonous materials have attracted researchers to synthesize lightweight self-lubricating metal matrix nanocomposites with superior mechanical and tribological properties for several applications in automotive and aerospace industries. This review focuses on the recent development in mechanical and tribological behavior of self-lubricating metallic nanocomposites reinforced by carbonous nanomaterials such as CNT and graphene. The review includes development of self-lubricating nanocomposites, related issues in their processing, their characterization, and investigation of their tribological behavior. The results reveal that adding CNT and graphene to metals decreases both coefficient of friction and wear rate as well as increases the tensile strength. The mechanisms involved for the improved mechanical and tribological behavior is discussed.

673 citations

Journal ArticleDOI
TL;DR: The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics as discussed by the authors. But this review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements.
Abstract: This review critically examines the current state of graphene reinforced metal (GNP-MMC) and ceramic matrix composites (GNP-CMC) The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics This review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements The review discusses processing techniques, effects of graphene on the mechanical behaviour of GNP-MMCs and GNP-CMCs, including early studies on the tribological performance of graphene-reinforced composites, where graphene has shown signs of serving as a protective and lubricious phase Additionally, the unique functional properties endowed by graphene to GNP-MMCs and GNP-CMCs, such as enhanced thermal/electrical conductivity, improved oxidation resistance, and excellent bi

456 citations

Journal ArticleDOI
TL;DR: The literature data supported that synthesis routes such as oxidative exfoliation-reduction, liquid-phase exfoliated and chemical vapor deposition have the potential to be commercialized due to their ability to produce large amount of high quality graphene.
Abstract: Graphene and its derivatives have gained significant attention of late due to their remarkable physicochemical properties. This review focuses firstly on the synthesis methods of graphene and its derivatives along with their attributes and characterization techniques. This is followed by a discussion of the potential industrial implementation of the synthesis routes. The potential industrial implementation of the graphene synthesis methods are reviewed using the key criteria of cost, process condition, yield, scalability, product quality and environmental impact. The literature data supported that synthesis routes such as oxidative exfoliation-reduction, liquid-phase exfoliation and chemical vapor deposition have the potential to be commercialized due to their ability to produce large amount of high quality graphene. Further development is necessary to overcome barriers such as environmental concerns and the high graphene cost.

280 citations

Journal ArticleDOI
04 Aug 2016-Polymers
TL;DR: In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene.
Abstract: Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has recently been employed as reinforcement in epoxy to enhance the fracture related properties of the produced epoxy–graphene nanocomposites. In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene. The factors in which contrasting results were reported in the literature are highlighted, such as the influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the challenges to achieving the desired performance of polymer nanocomposites are also suggested throughout the article.

241 citations

Journal ArticleDOI
18 Jun 2015-ACS Nano
TL;DR: The RGrO-and-Cu artificial nacres exhibited simultaneous enhancement on yield strength and ductility as well as increased modulus, attributed to R GrO strengthening, effective crack deflection and a possible combined failure mode of RGr O.
Abstract: Metals can be strengthened by adding hard reinforcements, but such strategy usually compromises ductility and toughness. Natural nacre consists of hard and soft phases organized in a regular “brick-and-mortar” structure and exhibits a superior combination of mechanical strength and toughness, which is an attractive model for strengthening and toughening artificial composites, but such bioinspired metal matrix composite has yet to be made. Here we prepared nacre-like reduced graphene oxide (RGrO) reinforced Cu matrix composite based on a preform impregnation process, by which two-dimensional RGrO was used as “brick” and inserted into “□-and-mortar” ordered porous Cu preform (the symbol “□” means the absence of “brick”), followed by compacting. This process realized uniform dispersion and alignment of RGrO in Cu matrix simultaneously. The RGrO-and-Cu artificial nacres exhibited simultaneous enhancement on yield strength and ductility as well as increased modulus, attributed to RGrO strengthening, effective ...

220 citations