scispace - formally typeset
Search or ask a question
Author

Candan Tamerler

Bio: Candan Tamerler is an academic researcher from University of Kansas. The author has contributed to research in topics: Peptide & Surface plasmon resonance. The author has an hindex of 42, co-authored 157 publications receiving 6650 citations. Previous affiliations of Candan Tamerler include University of Westminster & Istanbul Technical University.


Papers
More filters
Journal ArticleDOI
TL;DR: This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds.
Abstract: Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.

1,533 citations

Journal ArticleDOI
TL;DR: The results place the ERECTA family as the primary receptors for EPFs with TMM as a signal modulator and establish EPF2-ERECTA and EPF1-ERL1 as ligand-receptor pairs specifying two steps of stomatal development: initiation and spacing divisions.
Abstract: Valves on the plant epidermis called stomata develop according to positional cues, which likely involve putative ligands (EPIDERMAL PATTERNING FACTORS [EPFs]) and putative receptors (ERECTA family receptor kinases and TOO MANY MOUTHS [TMM]) in Arabidopsis. Here we report the direct, robust, and saturable binding of bioactive EPF peptides to the ERECTA family. In contrast, TMM exhibits negligible binding to EPF1 but binding to EPF2. The ERECTA family forms receptor homomers in vivo. On the other hand, TMM associates with the ERECTA family but not with itself. While ERECTA family receptor kinases exhibit complex redundancy, blocking ERECTA and ERECTA-LIKE1 (ERL1) signaling confers specific insensitivity to EPF2 and EPF1, respectively. Our results place the ERECTA family as the primary receptors for EPFs with TMM as a signal modulator and establish EPF2–ERECTA and EPF1–ERL1 as ligand–receptor pairs specifying two steps of stomatal development: initiation and spacing divisions.

304 citations

Journal ArticleDOI
TL;DR: In this review, inorganic-binding polypeptides are used as molecular building blocks to control assembly and formation of functional inorganic and hybrid materials and systems for nano- and nanobiotechnology applications.
Abstract: ▪ Abstract Molecular biomimetics can be defined as mimicking function, synthesis, or structure of materials and systems at the molecular scale using biological pathways. Here, inorganic-binding polypeptides are used as molecular building blocks to control assembly and formation of functional inorganic and hybrid materials and systems for nano- and nanobiotechnology applications. These polypeptides are selected via phage or cell surface display technologies and modified by molecular biology to tailor their binding and multifunctionality properties. The potential of this approach in creating new materials systems with useful physical and biological properties is enormous. This mostly stems from molecular recognition and self-assembly characteristics of the polypeptides plus the added advantage of genetic manipulation of their composition and structure. In this review, we highlight the basic premises of molecular biomimetics, describe the approaches in selecting and engineering inorganic-binding polypeptides...

256 citations

Journal ArticleDOI
08 Oct 2008-Langmuir
TL;DR: The effects of constraints imposed on FliTrx-selected gold-binding peptide molecular structures upon their quantitative gold- binding affinity are discussed.
Abstract: Despite extensive recent reports on combinatorially selected inorganic-binding peptides and their bionanotechnological utility as synthesizers and molecular linkers, there is still only limited knowledge about the molecular mechanisms of peptide binding to solid surfaces. There is, therefore, much work that needs to be carried out in terms of both the fundamentals of solid-binding kinetics of peptides and the effects of peptide primary and secondary structures on their recognition and binding to solid materials. Here we discuss the effects of constraints imposed on FliTrx-selected gold-binding peptide molecular structures upon their quantitative gold-binding affinity. We first selected two novel gold-binding peptide (AuBP) sequences using a FliTrx random peptide display library. These were, then, synthesized in two different forms: cyclic (c), reproducing the original FliTrx gold-binding sequence as displayed on bacterial cells, and linear (l) dodecapeptide gold-binding sequences. All four gold-binding pe...

204 citations

Journal ArticleDOI
TL;DR: Among all chemostat and batch selection strategies tested, the best selection strategy to obtain highly improved multiple-stress-resistant yeast was found to be batch selection for freezing-thawing stress.
Abstract: Various selection procedures in chemostats and batch cultures were systematically tested for their efficiency to select for a multiple-stress resistance phenotype in Saccharomyces cerevisiae. To determine the relative stress resistance phenotypes, mutant populations harvested at different time points and randomly chosen clones from selected populations were grown in batch cultures and exposed to oxidative, freezing-thawing, high-temperature and ethanol stress. For this purpose, we developed a high-throughput procedure in 96-well plates combined with a most-probable-number assay. Among all chemostat and batch selection strategies tested, the best selection strategy to obtain highly improved multiple-stress-resistant yeast was found to be batch selection for freezing-thawing stress. The final mutant populations selected for this particular stress were not only significantly improved in freezing-thawing stress resistance, but also in other stress resistances. The best isolated clone from these populations exhibited 102-, 89-, 62-, and 1429-fold increased resistance to freezing-thawing, temperature, ethanol, and oxidative stress, respectively. General selection guidelines for improving multiple-stress resistance in S. cerevisiae are presented and discussed.

194 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Oct 2007-Science
TL;DR: Inspired by the composition of adhesive proteins in mussels, dopamine self-polymerization is used to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics.
Abstract: We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

8,669 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations