scispace - formally typeset
Search or ask a question
Author

Candice Hansen

Bio: Candice Hansen is an academic researcher from Planetary Science Institute. The author has contributed to research in topics: Mars Exploration Program & Enceladus. The author has an hindex of 38, co-authored 142 publications receiving 7661 citations. Previous affiliations of Candice Hansen include California Institute of Technology & Jet Propulsion Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The HiRISE camera as mentioned in this paper provides detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006.
Abstract: [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire ∼1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines. HiRISE will support Mars exploration by locating and characterizing past, present, and future landing sites, unsuccessful landing sites, and past and potentially future rover traverses. We will investigate cratering, volcanism, tectonism, hydrology, sedimentary processes, stratigraphy, aeolian processes, mass wasting, landscape evolution, seasonal processes, climate change, spectrophotometry, glacial and periglacial processes, polar geology, and regolith properties. An Internet Web site (HiWeb) will enable anyone in the world to suggest HiRISE targets on Mars and to easily locate, view, and download HiRISE data products.

1,511 citations

Journal ArticleDOI
29 Jan 1982-Science
TL;DR: Within Saturn's rings, the "birth" of a spoke has been observed, and surprising azimuthal and time variability is found in the ringlet structure of the outer B ring, leading to speculations about Saturn's internal structure and about the collisional and thermal history of the rings and satellites.
Abstract: Voyager 2 photography has complemented that of Voyager I in revealing many additional characteristics of Saturn and its satellites and rings. Saturn's atmosphere contains persistent oval cloud features reminiscent of features on Jupiter. Smaller irregular features track out a pattern of zonal winds that is symmetric about Saturn's equator and appears to extend to great depth. Winds are predominantly eastward and reach 500 meters per second at the equator. Titan has several haze layers with significantly varying optical properties and a northern polar "collar" that is dark at short wavelengths. Several satellites have been photographed at substantially improved resolution. Enceladus' surface ranges from old, densely cratered terrain to relatively young, uncratered plains crossed by grooves and faults. Tethys has a crater 400 kilometers in diameter whose floor has domed to match Tethys' surface curvature and a deep trench that extends at least 270° around Tethys' circumference. Hyperion is cratered and irregular in shape. Iapetus' bright, trailing hemisphere includes several dark-floored craters, and Phoebe has a very low albedo and rotates in the direction opposite to that of its orbital revolution with a period of 9 hours. Within Saturn's rings, the "birth" of a spoke has been observed, and surprising azimuthal and time variability is found in the ringlet structure of the outer B ring. These observations lead to speculations about Saturn's internal structure and about the collisional and thermal history of the rings and satellites.

847 citations

Journal ArticleDOI
15 Dec 1989-Science
TL;DR: New Voyager 2 images of Neptune reveal a windy planet characterized by bright clouds of methane ice suspended in an exceptionally clear atmosphere above a lower deck of hydrogen sulfide or ammonia ices, dominated by a large anticyclonic storm system that has been named the Great Dark Spot.
Abstract: Voyager 2 images of Neptune reveal a windy planet characterized by bright clouds of methane ice suspended in an exceptionally clear atmosphere above a lower deck of hydrogen sulfide or ammonia ices. Neptune's atmosphere is dominated by a large anticyclonic storm system that has been named the Great Dark Spot (GDS). About the same size as Earth in extent, the GDS bears both many similarities and some differences to the Great Red Spot of Jupiter. Neptune's zonal wind profile is remarkably similar to that of Uranus. Neptune has three major rings at radii of 42,000, 53,000, and 63,000 kilometers. The outer ring contains three higher density arc-like segments that were apparently responsible for most of the ground-based occultation events observed during the current decade. Like the rings of Uranus, the Neptune rings are composed of very dark material; unlike that of Uranus, the Neptune system is very dusty. Six new regular satellites were found, with dark surfaces and radii ranging from 200 to 25 kilometers. All lie inside the orbit of Triton and the inner four are located within the ring system. Triton is seen to be a differentiated body, with a radius of 1350 kilometers and a density of 2.1 grams per cubic centimeter; it exhibits clear evidence of early episodes of surface melting. A now rigid crust of what is probably water ice is overlain with a brilliant coating of nitrogen frost, slightly darkened and reddened with organic polymer material. Streaks of organic polymer suggest seasonal winds strong enough to move particles of micrometer size or larger, once they become airborne. At least two active plumes were seen, carrying dark material 8 kilometers above the surface before being transported downstream by high level winds. The plumes may be driven by solar heating and the subsequent violent vaporization of subsurface nitrogen.

587 citations

Journal ArticleDOI
10 Mar 2006-Science
TL;DR: The Cassini spacecraft flew close to Saturn's small moon Enceladus three times in 2005 and observed stellar occultations on two flybys and confirmed the existence, composition, and regionally confined nature of a water vapor plume in the south polar region of Ence Gladus.
Abstract: The Cassini spacecraft flew close to Saturn's small moon Enceladus three times in 2005. Cassini's UltraViolet Imaging Spectrograph observed stellar occultations on two flybys and confirmed the existence, composition, and regionally confined nature of a water vapor plume in the south polar region of Enceladus. This plume provides an adequate amount of water to resupply losses from Saturn's E ring and to be the dominant source of the neutral OH and atomic oxygen that fill the Saturnian system.

506 citations

Journal ArticleDOI
04 Jul 1986-Science
TL;DR: Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere, and Voyager images confirm the extremely low albedo of the ring particles.
Abstract: Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere. The alignment of the cloud bands is similar to that of bands on Jupiter and Saturn, but the zonal winds are nearly opposite. At mid-latitudes (-70 degrees to -27 degrees ), where winds were measured, the atmosphere rotates faster than the magnetic field; however, the rotation rate of the atmosphere decreases toward the equator, so that the two probably corotate at about -20 degrees . Voyager images confirm the extremely low albedo of the ring particles. High phase angle images reveal on the order of 10(2) new ringlike features of very low optical depth and relatively high dust abundance interspersed within the main rings, as well as a broad, diffuse, low optical depth ring just inside the main rings system. Nine of the newly discovered small satellites (40 to 165 kilometers in diameter) orbit between the rings and Miranda; the tenth is within the ring system. Two of these small objects may gravitationally confine the e ring. Oberon and Umbriel have heavily cratered surfaces resembling the ancient cratered highlands of Earth's moon, although Umbriel is almost completely covered with uniform dark material, which perhaps indicates some ongoing process. Titania and Ariel show crater populations different from those on Oberon and Umbriel; these were probably generated by collisions with debris confined to their orbits. Titania and Ariel also show many extensional fault systems; Ariel shows strong evidence for the presence of extrusive material. About halfof Miranda's surface is relatively bland, old, cratered terrain. The remainder comprises three large regions of younger terrain, each rectangular to ovoid in plan, that display complex sets of parallel and intersecting scarps and ridges as well as numerous outcrops of bright and dark materials, perhaps suggesting some exotic composition.

408 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The HiRISE camera as mentioned in this paper provides detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006.
Abstract: [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire ∼1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines. HiRISE will support Mars exploration by locating and characterizing past, present, and future landing sites, unsuccessful landing sites, and past and potentially future rover traverses. We will investigate cratering, volcanism, tectonism, hydrology, sedimentary processes, stratigraphy, aeolian processes, mass wasting, landscape evolution, seasonal processes, climate change, spectrophotometry, glacial and periglacial processes, polar geology, and regolith properties. An Internet Web site (HiWeb) will enable anyone in the world to suggest HiRISE targets on Mars and to easily locate, view, and download HiRISE data products.

1,511 citations

Journal ArticleDOI
C. K. Goertz1
TL;DR: The processes that lead to charging of dust grains in a plasma are briefly reviewed in this article, where it is shown that the radial transport of dust contained in the spokes may be responsible for the rich radial structure in Saturn's rings.
Abstract: The processes that lead to charging of dust grains in a plasma are briefly reviewed. Whereas for single grains the results have been long known, the reduction of the average charge on a grain by 'Debye screening' has only recently been discovered. This reduction can be important in the Jovian ring and in the rings of Uranus. The emerging field of gravitoelectrodynamics which deals with the motion of charged grains in a planetary magnetosphere is then reviewed. Important mechanisms for distributing grains in radial distance are due to stochastic fluctuations of the grain charge and a systematic variation due to motion through plasma gradients. The electrostatic levitation model for the formation of spokes is discussed, and it is shown that the radial transport of dust contained in the spokes may be responsible for the rich radial structure in Saturn's rings. Finally, collective effects in dusty plasmas are discussed which affect various waves, such as density waves in planetary rings and low-frequency plasma waves. The possibility of charged grains forming a Coulomb lattice is briefly described.

1,470 citations

Journal ArticleDOI
TL;DR: The physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices are reviewed.
Abstract: The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices We also discuss the physics of wind-blown sand and dune formation on Venus and Titan

1,175 citations

Journal ArticleDOI
TL;DR: The Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO) is a Facility Instrument (i.e., government-furnished equipment operated by a science team not responsible for design and fabrication) designed, built, and operated by Malin Space Science Systems and the MRO Mars Color Imager team (MARCI) as mentioned in this paper.
Abstract: [1] The Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO) is a Facility Instrument (i.e., government-furnished equipment operated by a science team not responsible for design and fabrication) designed, built, and operated by Malin Space Science Systems and the MRO Mars Color Imager team (MARCI). CTX will (1) provide context images for data acquired by other MRO instruments, (2) observe features of interest to NASA's Mars Exploration Program (e.g., candidate landing sites), and (3) conduct a scientific investigation, led by the MARCI team, of geologic, geomorphic, and meteorological processes on Mars. CTX consists of a digital electronics assembly; a 350 mm f/3.25 Schmidt-type telescope of catadioptric optical design with a 5.7° field of view, providing a ∼30-km-wide swath from ∼290 km altitude; and a 5000-element CCD with a band pass of 500–700 nm and 7 μm pixels, giving ∼6 m/pixel spatial resolution from MRO's nearly circular, nearly polar mapping orbit. Raw data are transferred to the MRO spacecraft flight computer for processing (e.g., data compression) before transmission to Earth. The ground data system and operations are based on 9 years of Mars Global Surveyor Mars Orbiter Camera on-orbit experience. CTX has been allocated 12% of the total MRO data return, or about ≥3 terabits for the nominal mission. This data volume would cover ∼9% of Mars at 6 m/pixel, but overlapping images (for stereo, mosaics, and observation of changes and meteorological events) will reduce this area. CTX acquired its first (instrument checkout) images of Mars on 24 March 2006.

1,111 citations

Journal ArticleDOI
TL;DR: In this article, an extensive review of the physics of wind-blown sand and dust on Earth and Mars is presented, including a review of aeolian saltation, the formation and development of sand dunes and ripples, dust aerosol emission, weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices.
Abstract: The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

1,069 citations