scispace - formally typeset
Search or ask a question
Author

Caojin Yuan

Bio: Caojin Yuan is an academic researcher from Nanjing Normal University. The author has contributed to research in topics: Holography & Digital holographic microscopy. The author has an hindex of 14, co-authored 56 publications receiving 489 citations. Previous affiliations of Caojin Yuan include Kunming University of Science and Technology & University of Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulation and experimental results prove the performance of the proposed method of generating a complex structured vortex array, which is of significance for potential applications including multiple trapping of micro-sized particles.
Abstract: We propose an approach for creating optical vortex array (OVA) arranged along arbitrary curvilinear path, based on the coaxial interference of two width-controllable component curves calculated by modified holographic beam shaping technique. The two component curve beams have different radial dimensions as well as phase gradients along each beam such that the number of phase singularity in the curvilinear arranged optical vortex array (CA-OVA) is freely tunable on demand. Hybrid CA-OVA that comprises of multiple OVA structures along different respective curves is also discussed and demonstrated. Furthermore, we study the conversion of CA-OVA into vector mode that comprises of polarization vortex array with varied polarization state distribution. Both simulation and experimental results prove the performance of the proposed method of generating a complex structured vortex array, which is of significance for potential applications including multiple trapping of micro-sized particles.

59 citations

Journal ArticleDOI
TL;DR: Experimental results show that the resolution of the synthesized image exceeds the resolution determined by the numerical aperture of the imaging microscope objective.
Abstract: Angular and polarization multiplexing techniques are utilized in both object and reference arms in the digital holographic microscopy system to improve its resolution. The angular multiplexing provides on-axis and off-axis illumination and reference beams with different carrier frequencies. Polarization multiplexing prohibits the occurrence of interference between low and high object spatial frequencies and reference beams. The proposed system does not require special light sources or filtering masks. Experimental results show that the resolution of the synthesized image exceeds the resolution determined by the numerical aperture of the imaging microscope objective.

59 citations

Journal ArticleDOI
TL;DR: The results suggest that the proposed digital holographic autofocusing method performs better than other existing methods, in terms of applicability and computation efficiency, with potential applications in industrial and biomedical inspections where automatic focus tracking is necessary.
Abstract: Typical methods of automatic estimation of focusing in digital holography calculate every single reconstructed frame to get a critical function and then ascertain the focal plane by finding the extreme value of that function. Here, we propose a digital holographic autofocusing method that computes the focused distance using the first longitudinal difference of the magnitude of the reconstructed image. We demonstrate the proposed method with both numerical simulations and optical experiments of amplitude-contrast and phase-contrast objects. The results suggest that the proposed method performs better than other existing methods, in terms of applicability and computation efficiency, with potential applications in industrial and biomedical inspections where automatic focus tracking is necessary.

55 citations

Journal ArticleDOI
Lili Yao1, Caojin Yuan1, Junjie Qiang1, Shaotong Feng1, Shouping Nie1 
TL;DR: An encryption algorithm is proposed by using the properties of deduced gyrator transform to resist the attack from iterative phase retrieval, the red, green and blue components of the input image is modulated by a random phase mask and then combined using convolution.

54 citations

Journal ArticleDOI
TL;DR: In this paper , the authors review various resolution enhancement approaches in digital holographic microscopy (DHM) and discuss the advantages and disadvantages of these approaches and their practical applications in many fields.
Abstract: Digital holographic microscopy (DHM), which combines digital holography with optical microscopy, is a wide field, minimally invasive quantitative phase microscopy (QPM) approach for measuring the 3D shape or the inner structure of transparent and translucent samples. However, limited by diffraction, the spatial resolution of conventional DHM is relatively low and incompatible with a wide field of view (FOV) owing to the spatial bandwidth product (SBP) limit of the imaging systems. During the past decades, many efforts have been made to enhance the spatial resolution of DHM while preserving a large FOV by trading with unused degrees of freedom. Illumination modulation techniques, such as oblique illumination, structured illumination, and speckle illumination, can enhance the resolution by adding more high-frequency information to the recording system. Resolution enhancement is also achieved by extrapolation of a hologram or by synthesizing a larger hologram by scanning the sample, the camera, or inserting a diffraction grating between the sample and the camera. For on-chip DHM, spatial resolution is achieved using pixel super-resolution techniques. In this paper, we review various resolution enhancement approaches in DHM and discuss the advantages and disadvantages of these approaches. It is our hope that this review will contribute to advancements in DHM and its practical applications in many fields.

31 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal Article
TL;DR: In this article, a self-scanned 1024 element photodiode array and a minicomputer are used to measure the phase (wavefront) in the interference pattern of an interferometer to lambda/100.
Abstract: A self-scanned 1024 element photodiode array and minicomputer are used to measure the phase (wavefront) in the interference pattern of an interferometer to lambda/100. The photodiode array samples intensities over a 32 x 32 matrix in the interference pattern as the length of the reference arm is varied piezoelectrically. Using these data the minicomputer synchronously detects the phase at each of the 1024 points by a Fourier series method and displays the wavefront in contour and perspective plot on a storage oscilloscope in less than 1 min (Bruning et al. Paper WE16, OSA Annual Meeting, Oct. 1972). The array of intensities is sampled and averaged many times in a random fashion so that the effects of air turbulence, vibrations, and thermal drifts are minimized. Very significant is the fact that wavefront errors in the interferometer are easily determined and may be automatically subtracted from current or subsequent wavefrots. Various programs supporting the measurement system include software for determining the aperture boundary, sum and difference of wavefronts, removal or insertion of tilt and focus errors, and routines for spatial manipulation of wavefronts. FFT programs transform wavefront data into point spread function and modulus and phase of the optical transfer function of lenses. Display programs plot these functions in contour and perspective. The system has been designed to optimize the collection of data to give higher than usual accuracy in measuring the individual elements and final performance of assembled diffraction limited optical systems, and furthermore, the short loop time of a few minutes makes the system an attractive alternative to constraints imposed by test glasses in the optical shop.

1,300 citations

Journal ArticleDOI
TL;DR: The authors survey the steady refinement of techniques used to create optical vortices, and explore their applications, which include sophisticated optical computing processes, novel microscopy and imaging techniques, the creation of ‘optical tweezers’ to trap particles of matter, and optical machining using light to pattern structures on the nanoscale.
Abstract: Thirty years ago, Coullet et al. proposed that a special optical field exists in laser cavities bearing some analogy with the superfluid vortex. Since then, optical vortices have been widely studied, inspired by the hydrodynamics sharing similar mathematics. Akin to a fluid vortex with a central flow singularity, an optical vortex beam has a phase singularity with a certain topological charge, giving rise to a hollow intensity distribution. Such a beam with helical phase fronts and orbital angular momentum reveals a subtle connection between macroscopic physical optics and microscopic quantum optics. These amazing properties provide a new understanding of a wide range of optical and physical phenomena, including twisting photons, spin-orbital interactions, Bose-Einstein condensates, etc., while the associated technologies for manipulating optical vortices have become increasingly tunable and flexible. Hitherto, owing to these salient properties and optical manipulation technologies, tunable vortex beams have engendered tremendous advanced applications such as optical tweezers, high-order quantum entanglement, and nonlinear optics. This article reviews the recent progress in tunable vortex technologies along with their advanced applications.

1,016 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training, and this deep learning-based approach provides an entirely new framework to conduct holographic imaging by rapidly eliminating twin-image and self-interference-related spatial artifacts.
Abstract: Phase recovery from intensity-only measurements forms the heart of coherent imaging techniques and holography. In this study, we demonstrate that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training. This deep learning-based approach provides an entirely new framework to conduct holographic imaging by rapidly eliminating twin-image and self-interference-related spatial artifacts. This neural network-based method is fast to compute and reconstructs phase and amplitude images of the objects using only one hologram, requiring fewer measurements in addition to being computationally faster. We validated this method by reconstructing the phase and amplitude images of various samples, including blood and Pap smears and tissue sections. These results highlight that challenging problems in imaging science can be overcome through machine learning, providing new avenues to design powerful computational imaging systems.

684 citations