scispace - formally typeset
Search or ask a question
Author

Cara M. Doherty

Other affiliations: University of Melbourne
Bio: Cara M. Doherty is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Membrane & Gas separation. The author has an hindex of 43, co-authored 125 publications receiving 6121 citations. Previous affiliations of Cara M. Doherty include University of Melbourne.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that proteins, enzymes and DNA rapidly induce the formation of protective metal-organic framework coatings under physiological conditions by concentrating the framework building blocks and facilitating crystallization around the biomacromolecules.
Abstract: Robust biomacromolecules could be used for a wide range of biotechnological applications. Here the authors report a biomimetic mineralization process, in which biomolecules are encapsulated within metal-organic frameworks, and their stability is subsequently increased without significant bioactivity loss.

957 citations

Journal ArticleDOI
TL;DR: In this review, the current technologies that enable the precise positioning of MOFs onto different platforms are presented and examples of devices in which the control of MOF position and functionalisation will play a major technological role are presented.
Abstract: Metal organic frameworks (MOFs) offer the highest surface areas per gram of any known material. As such, they epitomise resource productivity in uses where specific surface area is critical, such as adsorption, storage, filtration and catalysis. However, the ability to control the position of MOFs is also crucial for their use in devices for applications such as sensing, delivery, sequestration, molecular transport, electronics, energy production, optics, bioreactors and catalysis. In this review we present the current technologies that enable the precise positioning of MOFs onto different platforms. Methods for permanent localisation, dynamic localisation, and spatial control of functional materials within MOF crystals are described. Finally, examples of devices in which the control of MOF position and functionalisation will play a major technological role are presented.

568 citations

Journal ArticleDOI
28 Apr 2016-Nature
TL;DR: Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance.
Abstract: The regulation of water content in polymeric membranes is important in a number of applications, such as reverse electrodialysis and proton-exchange fuel-cell membranes. External thermal and water management systems add both mass and size to systems, and so intrinsic mechanisms of retaining water and maintaining ionic transport in such membranes are particularly important for applications where small system size is important. For example, in proton-exchange membrane fuel cells, where water retention in the membrane is crucial for efficient transport of hydrated ions, by operating the cells at higher temperatures without external humidification, the membrane is self-humidified with water generated by electrochemical reactions. Here we report an alternative solution that does not rely on external regulation of water supply or high temperatures. Water content in hydrocarbon polymer membranes is regulated through nanometre-scale cracks ('nanocracks') in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance.

334 citations

Journal ArticleDOI
TL;DR: The underlying mechanism of discrimination permits "size-inverse" separation for a class of chabazite zeolites, similar to a "molecular trapdoor", and shows the highest selectivity of CO(2) over CH(4) reported to date with important application to natural gas purification.
Abstract: Separation of molecules based on molecular size in zeolites with appropriate pore aperture dimensions has given rise to the definition of "molecular sieves" and has been the basis for a variety of separation applications. We show here that for a class of chabazite zeolites, what appears to be "molecular sieving" based on dimension is actually separation based on a difference in ability of a guest molecule to induce temporary and reversible cation deviation from the center of pore apertures, allowing for exclusive admission of certain molecules. This new mechanism of discrimination permits "size-inverse" separation: we illustrate the case of admission of a larger molecule (CO) in preference to a smaller molecule (N(2)). Through a combination of experimental and computational approaches, we have uncovered the underlying mechanism and show that it is similar to a "molecular trapdoor". Our materials show the highest selectivity of CO(2) over CH(4) reported to date with important application to natural gas purification.

292 citations

Journal ArticleDOI
TL;DR: This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N2 selectivity.
Abstract: Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

265 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.

5,531 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art in organic field effect transistors (OFETs) are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays.
Abstract: Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future.

1,992 citations

Journal ArticleDOI
16 Jun 2017-Science
TL;DR: The permeability/selectivity trade-off is discussed, similarities and differences between synthetic and biological membranes are highlighted, challenges for existing membranes are described, and fruitful areas of future research are identified.
Abstract: BACKGROUND Synthetic membranes are used for desalination, dialysis, sterile filtration, food processing, dehydration of air and other industrial, medical, and environmental applications due to low energy requirements, compact design, and mechanical simplicity. New applications are emerging from the water-energy nexus, shale gas extraction, and environmental needs such as carbon capture. All membranes exhibit a trade-off between permeability—i.e., how fast molecules pass through a membrane material—and selectivity—i.e., to what extent the desired molecules are separated from the rest. However, biological membranes such as aquaporins and ion channels are both highly permeable and highly selective. Separation based on size difference is common, but there are other ways to either block one component or enhance transport of another through a membrane. Based on increasing molecular understanding of both biological and synthetic membranes, key design criteria for new membranes have emerged: (i) properly sized free-volume elements (or pores), (ii) narrow free-volume element (or pore size) distribution, (iii) a thin active layer, and (iv) highly tuned interactions between permeants of interest and the membrane. Here, we discuss the permeability/selectivity trade-off, highlight similarities and differences between synthetic and biological membranes, describe challenges for existing membranes, and identify fruitful areas of future research. ADVANCES Many organic, inorganic, and hybrid materials have emerged as potential membranes. In addition to polymers, used for most membranes today, materials such as carbon molecular sieves, ceramics, zeolites, various nanomaterials (e.g., graphene, graphene oxide, and metal organic frameworks), and their mixtures with polymers have been explored. Simultaneously, global challenges such as climate change and rapid population growth stimulate the search for efficient water purification and energy-generation technologies, many of which are membrane-based. Additional driving forces include wastewater reuse from shale gas extraction and improvement of chemical and petrochemical separation processes by increasing the use of light hydrocarbons for chemicals manufacturing. OUTLOOK Opportunities for advancing membranes include (i) more mechanically, chemically, and thermally robust materials; (ii) judiciously higher permeability and selectivity for applications where such improvements matter; and (iii) more emphasis on fundamental structure/property/processing relations. There is a pressing need for membranes with improved selectivity, rather than membranes with improved permeability, especially for water purification. Modeling at all length scales is needed to develop a coherent molecular understanding of membrane properties, provide insight for future materials design, and clarify the fundamental basis for trade-off behavior. Basic molecular-level understanding of thermodynamic and diffusion properties of water and ions in charged membranes for desalination and energy applications such as fuel cells is largely incomplete. Fundamental understanding of membrane structure optimization to control transport of minor species (e.g., trace-organic contaminants in desalination membranes, neutral compounds in charged membranes, and heavy hydrocarbons in membranes for natural gas separation) is needed. Laboratory evaluation of membranes is often conducted with highly idealized mixtures, so separation performance in real applications with complex mixtures is poorly understood. Lack of systematic understanding of methodologies to scale promising membranes from the few square centimeters needed for laboratory studies to the thousands of square meters needed for large applications stymies membrane deployment. Nevertheless, opportunities for membranes in both existing and emerging applications, together with an expanding set of membrane materials, hold great promise for membranes to effectively address separations needs.

1,794 citations