scispace - formally typeset
Search or ask a question
Author

Carl E. Wieman

Bio: Carl E. Wieman is an academic researcher from Stanford University. The author has contributed to research in topics: Bose–Einstein condensate & Physics education. The author has an hindex of 83, co-authored 330 publications receiving 34946 citations. Previous affiliations of Carl E. Wieman include University of Colorado Boulder & Joint Institute for Nuclear Research.


Papers
More filters
Journal ArticleDOI
14 Jul 1995-Science
TL;DR: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled and exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
Abstract: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled. The condensate fraction first appeared near a temperature of 170 nanokelvin and a number density of 2.5 x 10 12 per cubic centimeter and could be preserved for more than 15 seconds. Three primary signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity distribution, a narrow peak appeared that was centered at zero velocity. (ii) The fraction of the atoms that were in this low-velocity peak increased abruptly as the sample temperature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.

6,074 citations

Journal ArticleDOI
TL;DR: In this article, a coherent process involving the spatial and temporal control of interconversion between the two components was used to create vortices in two-component Bose-Einstein condensates.
Abstract: We have created vortices in two-component Bose-Einstein condensates. The vortex state was created through a coherent process involving the spatial and temporal control of interconversion between the two components. Using an interference technique, we map the phase of the vortex state to confirm that it possesses angular momentum. We can create vortices in either of the two components and have observed differences in the dynamics and stability.

1,341 citations

Journal ArticleDOI
TL;DR: In this paper, a double magneto-optic trap and an Ioffe-type magnetic trap were used to create condensates of $2.2(9)-ifmmode\times\else\texttimes\fi{}{10}^{6}$ atoms.
Abstract: A new apparatus featuring a double magneto-optic trap and an Ioffe-type magnetic trap was used to create condensates of $2\ifmmode\times\else\texttimes\fi{}{10}^{6}$ atoms in either of the $|F\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}2,m\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}2〉$ or $|F\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1,m\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}\ensuremath{-}1〉$ spin states of ${}^{87}$Rb. Overlapping condensates of the two states were also created using nearly lossless sympathetic cooling of one state via thermal contact with the other evaporatively cooled state. We observed that (i) the scattering length of the $|1,\ensuremath{-}1〉$ state is positive, (ii) the rate constant for binary inelastic collisions between the two states is $2.2(9)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}14}{\mathrm{cm}}^{3}/\mathrm{s}$, and (iii) there is a repulsive interaction between the two condensates. Similarities and differences between the behaviors of the two spin states are observed.

970 citations

Journal ArticleDOI
13 May 2011-Science
TL;DR: Increased student attendance, higher engagement, and more than twice the learning in the section taught using research-based instruction in an introductory undergraduate physics course is found.
Abstract: We compared the amounts of learning achieved using two different instructional approaches under controlled conditions. We measured the learning of a specific set of topics and objectives when taught by 3 hours of traditional lecture given by an experienced highly rated instructor and 3 hours of instruction given by a trained but inexperienced instructor using instruction based on research in cognitive psychology and physics education. The comparison was made between two large sections (N = 267 and N = 271) of an introductory undergraduate physics course. We found increased student attendance, higher engagement, and more than twice the learning in the section taught using research-based instruction.

925 citations


Cited by
More filters
Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
14 Jul 1995-Science
TL;DR: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled and exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
Abstract: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled. The condensate fraction first appeared near a temperature of 170 nanokelvin and a number density of 2.5 x 10 12 per cubic centimeter and could be preserved for more than 15 seconds. Three primary signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity distribution, a narrow peak appeared that was centered at zero velocity. (ii) The fraction of the atoms that were in this low-velocity peak increased abruptly as the sample temperature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.

6,074 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the Bose-Einstein condensation of dilute gases in traps from a theoretical perspective and provided a framework to understand the main features of the condensation and role of interactions between particles.
Abstract: The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground-state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.

4,782 citations