scispace - formally typeset
Search or ask a question
Author

Carl H. Albright

Other affiliations: Northern Illinois University
Bio: Carl H. Albright is an academic researcher from Fermilab. The author has contributed to research in topics: Neutrino & Lepton. The author has an hindex of 13, co-authored 47 publications receiving 778 citations. Previous affiliations of Carl H. Albright include Northern Illinois University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a tri-bimaximal mixing approach based on other symmetry principles is proposed. But the results of the experiments are limited and in some cases perturbations are required to give better agreement with the data, and use of a minimal approach is illustrated.
Abstract: Possible alternatives to tri-bimaximal mixing are presented based on other symmetry principles, and their predictions for |U e3|, sin 2 θ 12 and sin 2 θ 23 are compared to the present neutrino mixing data. In some cases perturbations are required to give better agreement with the data, and the use of a minimal approach is illustrated. Precise experimental determinations of the mixing parameters will be required to decipher the correct mixing pattern and to pin down the appropriate flavor symmetry.

217 citations

Journal ArticleDOI
TL;DR: In this paper, the predictions of trimaximal neutrino mixing are analyzed in detail, which is defined by a mixing matrix with identical second column elements. But the second column is not identical to the second row in the case of tri-bimaximal mixing.
Abstract: We analyze in detail the predictions of “trimaximal” neutrino mixing, which is defined by a mixing matrix with identical second column elements. This column is therefore identical to the second column in the case of tri-bimaximal mixing. We also generalize trimaximal mixing by assuming that the other rows and columns of the mixing matrix individually can have the same forms as for tri-bimaximal mixing. The phenomenology of these alternative scenarios and their mixing angle and CP phase correlations are studied. We emphasize how trimaximal mixing scenarios can be distinguished experimentally from broken tri-bimaximal mixing.

157 citations

Journal ArticleDOI
TL;DR: A complete set of fermion and Higgs superfields is introduced with well-defined SO(10) properties and U(1)xZ 2xZ2 family charges from which the Higgs and Yukawa superpotentials are constructed.
Abstract: A complete set of fermion and Higgs superfields is introduced with well-defined SO(10) properties and U(1)xZ{sub 2}xZ{sub 2} family charges from which the Higgs and Yukawa superpotentials are constructed. The structures derived for the four Dirac fermion and right-handed Majorana neutrino mass matrices coincide with those previously obtained from an effective operator approach. Ten mass matrix input parameters accurately yield the twenty masses and mixings of the quarks and leptons with the bimaximal atmospheric and solar neutrino vacuum solutions favored in this simplest version. (c) 2000 The American Physical Society.

55 citations

D. S. Ayres, Alexandre Lebedev, Karol Lang, R. L. Talaga, J. J. Grudzinski, John Oliver, A. C. Weber, R. Wands, T. Patzak, D. Cronin-Hennessy, Thomas R. Chase, Sacha E Kopp, R. S. Miller, S. Murgia, P. Stamoulis, Gary Drake, C. Howcroft, I. Trostin, Alec Habig, D. A. Harris, Francisco Yumiceva, Subhasmita Mishra, G. M. Irwin, J. L. Thron, J. A. Musser, B. Rebel, David Petyt, John W. Cooper, P. Shanahan, J. Huston, D. Koolbeck, V. Makeev, J. Trevor, P. J. Litchfield, J. Boehm, J. Schneps, S. R. Mishra, Warner A. Miller, O. Mena, G. J. Feldman, G.D. Barr, J. K. Nelson, K. Lee, H. R. Gallagher, V. A. Ryabov, V. J. Guarino, Roger Rusack, K. Grzelak, C. Rosenfeld, C. W. Peck, E. Tetteh-Lartey, K. Nelson, Rebecca Bernstein, Marvin L Marshak, Stephen J. Parke, G. F. Pearce, S. J. Brice, S. Stiliaris, J. Hanson, R. Schmitt, Mcd Sanchez, A. Belias, E. A. Peterson, A. Sousa, S. Mufson, H. Zheng, S. M. Seun, G. Tzanakos, J. W. Dawson, C. Bromberg, T. Joffe-Minor, Carl H. Albright, R. Hatcher, N. Felt, N. Giokaris, D. Drakoulakos, T. Bergfeld, A.K. Opper, J.H. Cobb, J. Hylen, D. G. Michael, T. Zhao, N. Tagg, T. Kafka, J. Urheim, A. V. Waldron, R. A. Richards, T. Yang, S. Childress, B. C. Choudhary, J. Rothberg, David B. Cline, T. Durkin, M. Zois, R.A. Rameika, R. C. Webb, D. E. Reyna, R.G. Wagner, C. Dukes, G. J. Bock, S.M. Grimes, W. A. Mann, A. Godley, Ken Heller, M. C. Goodman, Manfred Lindner, R. K. Plunkett, L. Camilleri, Stanley G. Wojcicki, R. Yarema, L. Mualem, K. Ruddick, R. E. Ray, R. Shrock, C. R. Bower, H. Jostlein, Panagiotis Spentzouris, J. Kilmer, T. Nicholls, Harvey B Newman, P. Lucas, S. Avvakumov, John F. Beacom, Hiroshi Nunokawa, C.R. Brune 
07 Jun 2004
TL;DR: A 30 kiloton tracking calorimeter with liquid scintillator filled PVC extrusion modules is proposed in the NOvA proposal as mentioned in this paper, with alternating horizontal and vertical rectangular cells.
Abstract: This is an updated version of the NOvA proposal The detector is a 30 kiloton tracking calorimeter, 157 m by 157 m by 132 m long, with alternating horizontal and vertical rectangular cells of liquid scintillator contained in PVC extrusion modules Light from each 157 m long cell of liquid scintillator filled PVC is collected by a wavelength shifting fiber and routed to an avalanche photodiode pixel The reach of NOvA for sin^2(2_theta_13) and related topics is increased relative to earlier versions of the proposal with the assumption of increased protons available from the Fermilab Main Injector following the end of Tevatron Collider operations in 2009

46 citations

D. S. Ayres, Alexandre Lebedev, Karol Lang, R. L. Talaga, J. J. Grudzinski, John Oliver, A. C. Weber, R. Wands, T. Patzak, D. Cronin-Hennessy, Thomas R. Chase, Sacha E Kopp, R. S. Miller, S. Murgia, P. Stamoulis, Gary Drake, C. Howcroft, I. Trostin, Alec Habig, D. A. Harris, Francisco Yumiceva, Subhasmita Mishra, G. M. Irwin, J. L. Thron, J. Musser, B. Rebel, David Petyt, P. Shanahan, J. Huston, D. Koolbeck, V. Makeev, J. Trevor, P. J. Litchfield, J. Boehm, J. Schneps, S. R. Mishra, Warner A. Miller, O. Mena, G. J. Feldman, G.D. Barr, J. K. Nelson, K. Lee, H. R. Gallagher, V. A. Ryabov, Victor Guarino, Roger Rusack, K. Grzelak, C. Rosenfeld, C. W. Peck, E. Tetteh-Lartey, K. Nelson, Rebecca Bernstein, Marvin L Marshak, Stephen J. Parke, G. F. Pearce, S. J. Brice, S. Stiliaris, J. Hanson, R. Schmitt, Mcd Sanchez, A. Belias, E. A. Peterson, A. Sousa, S. Mufson, H. Zheng, S. M. Seun, G. Tzanakos, J. W. Dawson, C. Bromberg, T. Joffe-Minor, Carl H. Albright, R. Hatcher, N. Felt, N. Giokaris, D. Drakoulakos, T. Bergfeld, A.K. Opper, J.H. Cobb, J. Hylen, D. G. Michael, T. Zhao, N. Tagg, T. Kafka, J. Urheim, John W. Cooper, A. V. Waldron, R. A. Richards, T. Yang, S. Childress, B. C. Choudhary, J. Rothberg, David B. Cline, T. Durkin, M. Zois, R.A. Rameika, R. C. Webb, D. E. Reyna, R.G. Wagner, C. Dukes, G. J. Bock, S.M. Grimes, W. A. Mann, A. Godley, Ken Heller, M. C. Goodman, Manfred Lindner, R. K. Plunkett, L. Camilleri, Stanley G. Wojcicki, R. Yarema, L. Mualem, K. Ruddick, R. E. Ray, R. Shrock, C. R. Bower, H. Jostlein, Panagiotis Spentzouris, J. Kilmer, T. Nicholls, Harvey B Newman, P. Lucas, S. Avvakumov, John F. Beacom, Hiroshi Nunokawa, C.R. Brune 
01 Jan 2004

41 citations


Cited by
More filters
01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations

Journal ArticleDOI
TL;DR: In this article, a theoretical description of the many-body dynamical electronic response of solids is presented, which underlines the existence of various collective electronic excitations at metal surfaces.
Abstract: Collective electronic excitations at metal surfaces are well known to play a key role in a wide spectrum of science, ranging from physics and materials science to biology. Here we focus on a theoretical description of the many-body dynamical electronic response of solids, which underlines the existence of various collective electronic excitations at metal surfaces, such as the conventional surface plasmon, multipole plasmons and the recently predicted acoustic surface plasmon. We also review existing calculations, experimental measurements and applications.

1,316 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the parital wave unitarity is not respected by the tree diagrams for two-body scattering of gauge bosons, and the weak interactions must become strong at high energies.
Abstract: We give an $S$-matrix-theoretic demonstration that if the Higgs-boson mass exceeds ${M}_{c}={(8\ensuremath{\pi}\frac{\sqrt{2}}{3}{G}_{F})}^{\frac{1}{2}}$, parital-wave unitarity is not respected by the tree diagrams for two-body scattering of gauge bosons, and the weak interactions must become strong at high energies. We exhibit the relation of this bound to the structure of the Higgs-Goldstone Lagrangian, and speculate on the consequences of strongly coupled Higgs-Goldstone systems. Prospects for the observation of massive Higgs scalars are noted.

1,206 citations

Journal ArticleDOI
Fengpeng An1, Guangpeng An, Qi An2, Vito Antonelli3  +226 moreInstitutions (55)
TL;DR: The Jiangmen Underground Neutrino Observatory (JUNO) as mentioned in this paper is a 20kton multi-purpose underground liquid scintillator detector with the determination of neutrino mass hierarchy (MH) as a primary physics goal.
Abstract: The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3–4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters ${\mathrm{sin}}^{2}{\theta }_{12}$, ${\rm{\Delta }}{m}_{21}^{2}$, and $| {\rm{\Delta }}{m}_{{ee}}^{2}| $ to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ∼5000 inverse-beta-decay events and ∼2000 all-flavor neutrino–proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ∼400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the ${\theta }_{23}$ mixing angle. Detection of the (7)Be and (8)B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with ${10}^{-5}\,{{\rm{eV}}}^{2}\lt {\rm{\Delta }}{m}_{41}^{2}\lt {10}^{-2}\,{{\rm{eV}}}^{2}$ and a sufficiently large mixing angle ${\theta }_{14}$ could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the $p\to {K}^{+}+\bar{ u }$ decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.

807 citations

Journal ArticleDOI
Fengpeng An1, Guangpeng An, Qi An2, Vito Antonelli3  +226 moreInstitutions (55)
TL;DR: The Jiangmen Underground Neutrino Observatory (JUNO) as mentioned in this paper is a 20 kton multi-purpose underground liquid scintillator detector with the determination of the neutrino mass hierarchy as a primary physics goal.
Abstract: The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $p\to K^++\bar u$ decay channel. The JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.

622 citations