scispace - formally typeset
Search or ask a question
Author

Carl Hirschie Johnson

Bio: Carl Hirschie Johnson is an academic researcher from Vanderbilt University. The author has contributed to research in topics: Circadian clock & Circadian rhythm. The author has an hindex of 72, co-authored 207 publications receiving 15474 citations. Previous affiliations of Carl Hirschie Johnson include National Institutes of Natural Sciences, Japan & Harvard University.


Papers
More filters
Journal ArticleDOI
24 May 2012-Nature
TL;DR: It is shown that oxidation–reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterizing their oscillations in a variety of model organisms and exploring the interconnectivity between these metabolic cycles and transcription–translation feedback loops of the clockwork in each system.
Abstract: Cellular life emerged ∼3.7 billion years ago. With scant exception, terrestrial organisms have evolved under predictable daily cycles owing to the Earth’s rotation. The advantage conferred on organisms that anticipate such environmental cycles has driven the evolution of endogenous circadian rhythms that tune internal physiology to external conditions. The molecular phylogeny of mechanisms driving these rhythms has been difficult to dissect because identified clock genes and proteins are not conserved across the domains of life: Bacteria, Archaea and Eukaryota. Here we show that oxidation–reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterizing their oscillations in a variety of model organisms. Furthermore, we explore the interconnectivity between these metabolic cycles and transcription–translation feedback loops of the clockwork in each system. Our results suggest an intimate co-evolution of cellular timekeeping with redox homeostatic mechanisms after the Great Oxidation Event ∼2.5 billion years ago. Daily oxidation–reduction cycles of peroxiredoxin proteins are shown to be conserved in all domains of life, including Bacteria, Archaea and Eukaryota. Most living organisms possess an endogenous circadian clock that ties their metabolism to a 24-hour day–night cycle. 'Clock genes' have been studied in many organisms and their variety has encouraged the view that each clock evolved independently. But there is a unifying factor: a non-transcriptionally based form of circadian oscillation, involving the oxidation–reduction cycles of peroxiredoxin proteins, has been identified in human red blood cells and algae. This study demonstrates that these redox cycles are conserved in all domains of life, including Bacteria, Archaea and Eukaryota, pointing to the possibility that this type of cellular timekeeping has co-evolved with redox homeostatic mechanisms across organisms for billions of years. The link may go back 2.5 billion years, to the Great Oxidation Event that consigned anaerobic metabolism to the margins of evolutionary history.

765 citations

Journal ArticleDOI
04 Sep 1998-Science
TL;DR: A negative feedback control of kaiC expression by KaiC generates a circadian oscillation in cyanobacteria, and KaiA sustains the oscillation by enhancing kaiA expression.
Abstract: Cyanobacteria are the simplest organisms known to have a circadian clock. A circadian clock gene cluster kaiABC was cloned from the cyanobacterium Synechococcus. Nineteen clock mutations were mapped to the three kai genes. Promoter activities upstream of the kaiA and kaiB genes showed circadian rhythms of expression, and both kaiA and kaiBC messenger RNAs displayed circadian cycling. Inactivation of any single kai gene abolished these rhythms and reduced kaiBC-promoter activity. Continuous kaiC overexpression repressed the kaiBC promoter, whereas kaiA overexpression enhanced it. Temporal kaiC overexpression reset the phase of the rhythms. Thus, a negative feedback control of kaiC expression by KaiC generates a circadian oscillation in cyanobacteria, and KaiA sustains the oscillation by enhancing kaiC expression.

727 citations

Journal ArticleDOI
TL;DR: This work tested the adaptive significance of circadian programming by measuring the relative fitness under competition between various strains of cyanobacteria expressing different circadian periods and found strains that had a circadian period similar to that of the light/dark cycle were favored under competition in a manner that indicates the action of soft selection.
Abstract: In some organisms longevity, growth, and developmental rate are improved when they are maintained on a light/dark cycle, the period of which “resonates” optimally with the period of the endogenous circadian clock. However, to our knowledge no studies have demonstrated that reproductive fitness per se is improved by resonance between the endogenous clock and the environmental cycle. We tested the adaptive significance of circadian programming by measuring the relative fitness under competition between various strains of cyanobacteria expressing different circadian periods. Strains that had a circadian period similar to that of the light/dark cycle were favored under competition in a manner that indicates the action of soft selection.

717 citations

Journal ArticleDOI
TL;DR: The BRET technique is used to demonstrate that the clock protein KaiB interacts to form homodimers, and should be particularly useful for testing protein interactions within native cells, especially with integral membrane proteins or proteins targeted to specific organelles.
Abstract: We describe a method for assaying protein interactions that offers some attractive advantages over previous assays. This method, called bioluminescence resonance energy transfer (BRET), uses a bioluminescent luciferase that is genetically fused to one candidate protein, and a green fluorescent protein mutant fused to another protein of interest. Interactions between the two fusion proteins can bring the luciferase and green fluorescent protein close enough for resonance energy transfer to occur, thus changing the color of the bioluminescent emission. By using proteins encoded by circadian (daily) clock genes from cyanobacteria, we use the BRET technique to demonstrate that the clock protein KaiB interacts to form homodimers. BRET should be particularly useful for testing protein interactions within native cells, especially with integral membrane proteins or proteins targeted to specific organelles.

629 citations

Journal ArticleDOI
07 Aug 2020-Science
TL;DR: Hundreds of antibodies against the viral spike protein of SARS-CoV-2 are isolated from the memory B cells of a survivor of the 2003 outbreak and reveal a target for the rational design of pan-sarbecovirus vaccines.
Abstract: Broadly protective vaccines against known and preemergent human coronaviruses (HCoVs) are urgently needed. To gain a deeper understanding of cross-neutralizing antibody responses, we mined the memory B cell repertoire of a convalescent severe acute respiratory syndrome (SARS) donor and identified 200 SARS coronavirus 2 (SARS-CoV-2) binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the non-neutralizing antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of preexisting memory B cells elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a target for the rational design of pan-sarbecovirus vaccines.

507 citations


Cited by
More filters
Journal ArticleDOI
20 Jan 2000-Nature
TL;DR: The construction of a genetic toggle switch is presented—a synthetic, bistable gene-regulatory network—in Escherichia coli and a simple theory is provided that predicts the conditions necessary for bistability.
Abstract: It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.

4,222 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
Jay C. Dunlap1
22 Jan 1999-Cell
TL;DR: It used to be that research in chronobiology moved biochemical functions [transcriptional activators], the along at a gentlemanly pace, but by mid 1997 the word in determining what the authors perceive as time was PASWCCLK.

2,723 citations

Journal ArticleDOI
TL;DR: This Review describes how metagenomics and 16S pyrosequencing techniques are opening the way towards global ecosystem network prediction and the development of ecosystem-wide dynamic models.
Abstract: Metagenomics and 16S pyrosequencing have enabled the study of ecosystem structure and dynamics to great depth and accuracy. Co-occurrence and correlation patterns found in these data sets are increasingly used for the prediction of species interactions in environments ranging from the oceans to the human microbiome. In addition, parallelized co-culture assays and combinatorial labelling experiments allow high-throughput discovery of cooperative and competitive relationships between species. In this Review, we describe how these techniques are opening the way towards global ecosystem network prediction and the development of ecosystem-wide dynamic models.

2,401 citations

Journal ArticleDOI
03 May 2002-Cell
TL;DR: Genetic and genomic analysis suggests that a relatively small number of output genes are directly regulated by core oscillator components, and major processes regulated by the SCN and liver were found to be under circadian regulation.

2,227 citations