scispace - formally typeset
Search or ask a question
Author

Carl Kesselman

Bio: Carl Kesselman is an academic researcher from University of Southern California. The author has contributed to research in topics: Grid & Grid computing. The author has an hindex of 82, co-authored 257 publications receiving 55377 citations. Previous affiliations of Carl Kesselman include Southern California Earthquake Center & University of California, San Diego.


Papers
More filters
Proceedings ArticleDOI
22 Jun 2003
TL;DR: This work describes new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service-oriented framework based on Web services.
Abstract: Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations." The dynamic and multiinstitutional nature of these environments introduces challenging security issues that demand new technical approaches. In particular, one must deal with diverse local mechanisms, support dynamic creation of services, and enable dynamic creation of trust domains. We describe how these issues are addressed in two generations of the Globus Toolkit/spl reg/. First, we review the Globus Toolkit version 2 (GT2) approach; then we describe new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service-oriented framework based on Web services. GT3's security implementation uses Web services security mechanisms for credential exchange and other purposes, and introduces a tight least-privilege model that avoids the need for any privileged network service.

518 citations

Journal ArticleDOI
TL;DR: The current ACWG based on AI planning technologies is described and it is outlined how these technologies can play a crucial role in developing complex application workflows in Grid environments.
Abstract: In this paper we address the problem of automatically generating job workflows for the Grid. These workflows describe the execution of a complex application built from individual application components. In our work we have developed two workflow generators: the first (the Concrete Workflow Generator CWG) maps an abstract workflow defined in terms of application-level components to the set of available Grid resources. The second generator (Abstract and Concrete Workflow Generator, ACWG) takes a wider perspective and not only performs the abstract to concrete mapping but also enables the construction of the abstract workflow based on the available components. This system operates in the application domain and chooses application components based on the application metadata attributes. We describe our current ACWG based on AI planning technologies and outline how these technologies can play a crucial role in developing complex application workflows in Grid environments. Although our work is preliminary, CWG has already been used to map high energy physics applications onto the Grid. In one particular experiment, a set of production runs lasted 7 days and resulted in the generation of 167,500 events by 678 jobs. Additionally, ACWG was used to map gravitational physics workflows, with hundreds of nodes onto the available resources, resulting in 975 tasks, 1365 data transfers and 975 output files produced.

517 citations

Posted Content
TL;DR: The Globus Toolkit version 2 (GT2) as discussed by the authors was developed to support the Open Grid Services Architecture, an initiative that recasting Grid concepts within a service oriented framework based on Web services.
Abstract: Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations." The dynamic and multi-institutional nature of these environments introduces challenging security issues that demand new technical approaches. In particular, one must deal with diverse local mechanisms, support dynamic creation of services, and enable dynamic creation of trust domains. We describe how these issues are addressed in two generations of the Globus Toolkit. First, we review the Globus Toolkit version 2 (GT2) approach; then, we describe new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service oriented framework based on Web services. GT3's security implementation uses Web services security mechanisms for credential exchange and other purposes, and introduces a tight least-privilege model that avoids the need for any privileged network service.

507 citations

Proceedings ArticleDOI
05 Aug 1997
TL;DR: This work proposes a Metacomputing Directory Service that provides efficient and scalable access to diverse, dynamic, and distributed information about resource structure and state and defines an extensible data model to represent required information and presents a scalable, high-performance, distributed implementation.
Abstract: High-performance execution in distributed computing environments often requires careful selection and configuration not only of computers, networks, and other resources but also of the protocols and algorithms used by applications. Selection and configuration in turn require access to accurate, up-to-date information on the structure and state of available resources. Unfortunately no standard mechanism exists for organizing or accessing such information. Consequently different tools and applications adopt ad hoc mechanisms, or they compromise their portability and performance by using default configurations. We propose a Metacomputing Directory Service that provides efficient and scalable access to diverse, dynamic, and distributed information about resource structure and state. We define an extensible data model to represent required information and present a scalable, high-performance, distributed implementation. The data representation and application programming interface are adopted from the Lightweight Directory Access Protocol; the data model and implementation are new. We use the Globus distributed computing toolkit to illustrate how this directory service enables the development of more flexible and efficient distributed computing services and applications.

467 citations

Book ChapterDOI
30 May 2003
TL;DR: This presentation complements an earlier foundational article, “The Anatomy of the Grid,” by describing how Grid mechanisms can implement a service-oriented architecture, explaining how Grid functionality can be incorporated into a Web services framework, and illustrating how the architecture can be applied within commercial computing as a basis for distributed system integration.
Abstract: In both e-business and e-science, we often need to integrate services across distributed, heterogeneous, dynamic “virtual organizations” formed from the disparate resources within a single enterprise and/or from external resource sharing and service provider relationships. This integration can be technically challenging because of the need to achieve various qualities of service when running on top of different native platforms. We present an Open Grid Services Architecture that addresses these challenges. Building on concepts and technologies from the Grid and Web services communities, this architecture defines a uniform exposed service semantics (the Grid service); defines standard mechanisms for creating, naming, and discovering transient Grid service instances; provides location transparency and multiple protocol bindings for service instances; and supports integration with underlying native platform facilities. The Open Grid Services Architecture also defines, in terms of Web Services Description Language (WSDL) interfaces and associated conventions, mechanisms required for creating and composing sophisticated distributed systems, including lifetime management, change management, and notification. Service bindings can support reliable invocation, authentication, authorization, and delegation, if required. Our presentation complements an earlier foundational article, “The Anatomy of the Grid,” by describing how Grid mechanisms can implement a service-oriented architecture, explaining how Grid functionality can be incorporated into a Web services framework, and illustrating how our architecture can be applied within commercial computing as a basis for distributed system integration—within and across organizational domains. This is a DRAFT document and continues to be revised. The latest version can be found at http://www.globus.org/research/papers/ogsa.pdf. Please send comments to foster@mcs.anl.gov, carl@isi.edu, jnick@us.ibm.com, tuecke@mcs.anl.gov Physiology of the Grid 2

449 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2001
TL;DR: The authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high performance orientation. In this article, the authors define this new field. First, they review the "Grid problem," which is defined as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources--what is referred to as virtual organizations. In such settings, unique authentication, authorization, resource access, resource discovery, and other challenges are encountered. It is this class of problem that is addressed by Grid technologies. Next, the authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. The authors describe requirements that they believe any such mechanisms must satisfy and discuss the importance of defining a compact set of intergrid protocols to enable interoperability among different Grid systems. Finally, the authors discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. They maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

6,716 citations

Journal ArticleDOI
Jeffrey O. Kephart1, David M. Chess1
TL;DR: A 2001 IBM manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet.
Abstract: A 2001 IBM manifesto observed that a looming software complexity crisis -caused by applications and environments that number into the tens of millions of lines of code - threatened to halt progress in computing. The manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet. Autonomic computing, perhaps the most attractive approach to solving this problem, creates systems that can manage themselves when given high-level objectives from administrators. Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.

6,527 citations

Journal ArticleDOI
TL;DR: This paper defines Cloud computing and provides the architecture for creating Clouds with market-oriented resource allocation by leveraging technologies such as Virtual Machines (VMs), and provides insights on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain Service Level Agreement (SLA) oriented resource allocation.

5,850 citations

Journal ArticleDOI
TL;DR: The result of this case study proves that the federated Cloud computing model significantly improves the application QoS requirements under fluctuating resource and service demand patterns.
Abstract: Cloud computing is a recent advancement wherein IT infrastructure and applications are provided as ‘services’ to end-users under a usage-based payment model. It can leverage virtualized services even on the fly based on requirements (workload patterns and QoS) varying with time. The application services hosted under Cloud computing model have complex provisioning, composition, configuration, and deployment requirements. Evaluating the performance of Cloud provisioning policies, application workload models, and resources performance models in a repeatable manner under varying system and user configurations and requirements is difficult to achieve. To overcome this challenge, we propose CloudSim: an extensible simulation toolkit that enables modeling and simulation of Cloud computing systems and application provisioning environments. The CloudSim toolkit supports both system and behavior modeling of Cloud system components such as data centers, virtual machines (VMs) and resource provisioning policies. It implements generic application provisioning techniques that can be extended with ease and limited effort. Currently, it supports modeling and simulation of Cloud computing environments consisting of both single and inter-networked clouds (federation of clouds). Moreover, it exposes custom interfaces for implementing policies and provisioning techniques for allocation of VMs under inter-networked Cloud computing scenarios. Several researchers from organizations, such as HP Labs in U.S.A., are using CloudSim in their investigation on Cloud resource provisioning and energy-efficient management of data center resources. The usefulness of CloudSim is demonstrated by a case study involving dynamic provisioning of application services in the hybrid federated clouds environment. The result of this case study proves that the federated Cloud computing model significantly improves the application QoS requirements under fluctuating resource and service demand patterns. Copyright © 2010 John Wiley & Sons, Ltd.

4,570 citations