scispace - formally typeset
Search or ask a question
Author

Carl-Mikael Zetterling

Bio: Carl-Mikael Zetterling is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Silicon carbide & Bipolar junction transistor. The author has an hindex of 30, co-authored 226 publications receiving 3313 citations. Previous affiliations of Carl-Mikael Zetterling include Stanford University & Jean Monnet University.


Papers
More filters
MonographDOI
01 Jan 2002
TL;DR: Zetterling, S.M.Ostling and S.J.Pearton as mentioned in this paper, S.Sveinbjornsson, S.-K.Lee, and M.
Abstract: Introduction 1 Advantages of SiC C.-M.Zetterling and M.Ostling 2 Bulk and epitaxial growth of SiC N.Nordell 3 Ion implantation and diffusion in SiC A.Schoner 4 Wet and dry etching of SiC S.J.Pearton 5 Thermally grown and deposited thermoelectrics E.O.Sveinbjornsson and C.-M.Zetterling 6 Schottky and ohmic contacts to SiC C.-M.Zetterling, S.-K.Lee and M.Ostling 7 Devices in SiC C.-M.Zetterling, S.M.Koo and M.Ostling Appendix 1: Other resources Appendix 2: Glossary Index

218 citations

Proceedings ArticleDOI
23 May 2011
TL;DR: In this paper, the authors present a short review of the current state of the art in active switching device performance for both SiC and GaN, and present the SiC wafer roadmap looks very favorable as volume production takes off.
Abstract: Silicon carbide (SiC) semiconductor devices for high power applications are now commercially available as discrete devices. Recently Schottky diodes are offered by both USA and Europe based companies. Active switching devices such as bipolar junction transistors (BJTs), field effect transistors (JFETs and MOSFETs) are now available on the commercial market. The interest is rapidly growing for these devices in high power and high temperature applications. The main advantages of wide bandgap semiconductors are their very high critical electric field capability. From a power device perspective the high critical field strength can be used to design switching devices with much lower losses than conventional silicon based devices both for on-state losses and reduced switching losses. This paper reviews the current state of the art in active switching device performance for both SiC and GaN. SiC material quality and epitaxy processes have greatly improved and degradation free 100 mm wafers are readily available. The SiC wafer roadmap looks very favorable as volume production takes off. For GaN materials the main application area is geared towards the lower power rating level up to 1 kV on mostly lateral FET designs. Power module demonstrations are beginning to appear in scientific reports and real applications. A short review is therefore given. Other advantages of SiC is the possibility of high temperature operation (> 300 °C) and in radiation hard environments, which could offer considerable system advantages.

190 citations

Journal ArticleDOI
TL;DR: A parametric study of the etching characteristics of 6H p+ and n+ SiC and thin-film SiC 0.5N0.5 in inductively coupled plasma (ICP) NF3/O2 and NF3 /Ar discharges has been performed as mentioned in this paper, where the etch rates in both chemistries increase monotonically with NF3 percentage and rf chuck power.
Abstract: A parametric study of the etching characteristics of 6H p+ and n+ SiC and thin-film SiC0.5N0.5 in inductively coupled plasma (ICP) NF3/O2 and NF3/Ar discharges has been performed. The etch rates in both chemistries increase monotonically with NF3 percentage and rf chuck power. The etch rates go through a maximum with increasing ICP source power, which is explained by a trade-off between the increasing ion flux and the decreasing ion energy. The anisotropy of the etched features is also a function of ion flux, ion energy and atomic fluorine neutral concentration. Indium-tin-oxide masks display relatively good etch selectivity over SiC (maximum of ∌70:1), while photoresist etches more rapidly than SiC. The surface roughness of SiC is essentially independent of plasma composition for NF3/O2 discharges, while extensive surface degradation occurs for SiCN under high NF3:O2 conditions. © 1998 American Vacuum Society.

132 citations

Journal ArticleDOI
TL;DR: In this article, the performance of low-voltage 4H-SiC n-p-n bipolar transistors and digital integrated circuits based on emitter coupled logic is reported from -40 °C to 500 °C.
Abstract: Successful operation of low-voltage 4H-SiC n-p-n bipolar transistors and digital integrated circuits based on emitter coupled logic is reported from -40 °C to 500 °C. Nonmonotonous temperature dependence (previously predicted by simulations but now measured) was observed for the transistor current gain; in the range -40 °C-300 °C it decreased when the temperature increased, while it increased in the range 300 °C-500 °C. Stable noise margins of ~ 1 V were measured for a 2-input OR/NOR gate operated on -15 V supply voltage from 0 °C to 500 °C for both OR and NOR output.

84 citations

Journal ArticleDOI
TL;DR: In this paper, the size-selected Au nano-particles in Schottky contacts on silicon carbide were used to reduce the barrier height of the contacts, and the reduction was shown for both n- and p-type Schittky contacts using current-voltage and capacitance voltage measurements.
Abstract: By the incorporation of size-selected Au nano-particles in Ti Schottky contacts on silicon carbide, we could observe considerably lower the barrier height of the contacts. This result could be obtained for both n- and p-type Schottky contacts using current-voltage and capacitance voltage measurements. For n-type Schottky contacts, we observed reductions of 0.19-0.25 eV on 4H-SiC and 0.15-0.17 eV on 6H-SiC as compared with particle-free Ti Schottky contacts. For p-type SiC, the reduction was a little lower with 0.02-0.05 eV on 4H- and 0.10-0.13 eV on 6H-SiC. The reduction of the Schottky barrier height is explained using a model with enhanced electric field at the interface due to the small size of the circular patch and the large difference of the barrier height between Ti and Au.

71 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation is presented.
Abstract: Wide bandgap semiconductors show superior material properties enabling potential power device operation at higher temperatures, voltages, and switching speeds than current Si technology. As a result, a new generation of power devices is being developed for power converter applications in which traditional Si power devices show limited operation. The use of these new power semiconductor devices will allow both an important improvement in the performance of existing power converters and the development of new power converters, accounting for an increase in the efficiency of the electric energy transformations and a more rational use of the electric energy. At present, SiC and GaN are the more promising semiconductor materials for these new power devices as a consequence of their outstanding properties, commercial availability of starting material, and maturity of their technological processes. This paper presents a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation.

1,648 citations

Journal ArticleDOI
01 Dec 1983-Nature
TL;DR: In this paper, a considerable collection of totally free of expense Book for people from every single stroll of life has been gathered to gather a sizable library of preferred cost-free as well as paid files.
Abstract: Our goal is always to offer you an assortment of cost-free ebooks too as aid resolve your troubles. We have got a considerable collection of totally free of expense Book for people from every single stroll of life. We have got tried our finest to gather a sizable library of preferred cost-free as well as paid files. Whatever our proffesion, the art of electronics can be excellent resource for reading. Find the existing reports of word, txt, kindle, ppt, zip, pdf, as well as rar in this site. You can definitely check out online or download this book by below. Currently, never miss it. This is really going to save you time and your money in something should think about. If you're seeking then search around for online. Without a doubt there are several these available and a lot of them have the freedom. However no doubt you receive what you spend on. An alternate way to get ideas would be to check another the art of electronics. GO TO THE TECHNICAL WRITING FOR AN EXPANDED TYPE OF THIS THE ART OF ELECTRONICS, ALONG WITH A CORRECTLY FORMATTED VERSION OF THE INSTANCE MANUAL PAGE ABOVE.

1,146 citations

BookDOI
27 Sep 2001
TL;DR: In this paper, the authors present a detailed overview of the history of the field of flow simulation for MEMS and discuss the current state-of-the-art in this field.
Abstract: Part I: Background and Fundamentals Introduction, Mohamed Gad-el-Hak, University of Notre Dame Scaling of Micromechanical Devices, William Trimmer, Standard MEMS, Inc., and Robert H. Stroud, Aerospace Corporation Mechanical Properties of MEMS Materials, William N. Sharpe, Jr., Johns Hopkins University Flow Physics, Mohamed Gad-el-Hak, University of Notre Dame Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains, Robert M. Kirby and George Em Karniadakis, Brown University, and Oleg Mikulchenko and Kartikeya Mayaram, Oregon State University Liquid Flows in Microchannels, Kendra V. Sharp and Ronald J. Adrian, University of Illinois at Urbana-Champaign, Juan G. Santiago and Joshua I. Molho, Stanford University Burnett Simulations of Flows in Microdevices, Ramesh K. Agarwal and Keon-Young Yun, Wichita State University Molecular-Based Microfluidic Simulation Models, Ali Beskok, Texas A&M University Lubrication in MEMS, Kenneth S. Breuer, Brown University Physics of Thin Liquid Films, Alexander Oron, Technion, Israel Bubble/Drop Transport in Microchannels, Hsueh-Chia Chang, University of Notre Dame Fundamentals of Control Theory, Bill Goodwine, University of Notre Dame Model-Based Flow Control for Distributed Architectures, Thomas R. Bewley, University of California, San Diego Soft Computing in Control, Mihir Sen and Bill Goodwine, University of Notre Dame Part II: Design and Fabrication Materials for Microelectromechanical Systems Christian A. Zorman and Mehran Mehregany, Case Western Reserve University MEMS Fabrication, Marc J. Madou, Nanogen, Inc. LIGA and Other Replication Techniques, Marc J. Madou, Nanogen, Inc. X-Ray-Based Fabrication, Todd Christenson, Sandia National Laboratories Electrochemical Fabrication (EFAB), Adam L. Cohen, MEMGen Corporation Fabrication and Characterization of Single-Crystal Silicon Carbide MEMS, Robert S. Okojie, NASA Glenn Research Center Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide, Glenn M. Beheim, NASA Glenn Research Center Microfabricated Chemical Sensors for Aerospace Applications, Gary W. Hunter, NASA Glenn Research Center, Chung-Chiun Liu, Case Western Reserve University, and Darby B. Makel, Makel Engineering, Inc. Packaging of Harsh-Environment MEMS Devices, Liang-Yu Chen and Jih-Fen Lei, NASA Glenn Research Center Part III: Applications of MEMS Inertial Sensors, Paul L. Bergstrom, Michigan Technological University, and Gary G. Li, OMM, Inc. Micromachined Pressure Sensors, Jae-Sung Park, Chester Wilson, and Yogesh B. Gianchandani, University of Wisconsin-Madison Sensors and Actuators for Turbulent Flows. Lennart Loefdahl, Chalmers University of Technology, and Mohamed Gad-el-Hak, University of Notre Dame Surface-Micromachined Mechanisms, Andrew D. Oliver and David W. Plummer, Sandia National Laboratories Microrobotics Thorbjoern Ebefors and Goeran Stemme, Royal Institute of Technology, Sweden Microscale Vacuum Pumps, E. Phillip Muntz, University of Southern California, and Stephen E. Vargo, SiWave, Inc. Microdroplet Generators. Fan-Gang Tseng, National Tsing Hua University, Taiwan Micro Heat Pipes and Micro Heat Spreaders, G. P. "Bud" Peterson, Rensselaer Polytechnic Institute Microchannel Heat Sinks, Yitshak Zohar, Hong Kong University of Science and Technology Flow Control, Mohamed Gad-el-Hak, University of Notre Dame) Part IV: The Future Reactive Control for Skin-Friction Reduction, Haecheon Choi, Seoul National University Towards MEMS Autonomous Control of Free-Shear Flows, Ahmed Naguib, Michigan State University Fabrication Technologies for Nanoelectromechanical Systems, Gary H. Bernstein, Holly V. Goodson, and Gregory L. Snider, University of Notre Dame Index

951 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300/spl deg/C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog VLSI in this temperature range.
Abstract: The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300/spl deg/C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog VLSI in this temperature range. However practical operation of silicon power devices at ambient temperatures above 200/spl deg/C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

863 citations

Journal ArticleDOI
TL;DR: In this article, the features and present status of SiC power devices are briefly described, and several important aspects of the material science and device physics of the SiC, such as impurity doping, extended and point defects, and the impact of such defects on device performance and reliability, are reviewed.
Abstract: Power semiconductor devices are key components in power conversion systems. Silicon carbide (SiC) has received increasing attention as a wide-bandgap semiconductor suitable for high-voltage and low-loss power devices. Through recent progress in the crystal growth and process technology of SiC, the production of medium-voltage (600?1700 V) SiC Schottky barrier diodes (SBDs) and power metal?oxide?semiconductor field-effect transistors (MOSFETs) has started. However, basic understanding of the material properties, defect electronics, and the reliability of SiC devices is still poor. In this review paper, the features and present status of SiC power devices are briefly described. Then, several important aspects of the material science and device physics of SiC, such as impurity doping, extended and point defects, and the impact of such defects on device performance and reliability, are reviewed. Fundamental issues regarding SiC SBDs and power MOSFETs are also discussed.

750 citations