scispace - formally typeset
Search or ask a question
Author

Carlo Bernard

Bio: Carlo Bernard is an academic researcher from University of Zurich. The author has contributed to research in topics: Nanomesh & Graphene. The author has an hindex of 4, co-authored 8 publications receiving 297 citations.

Papers
More filters
DOI
Claudia Backes1, Claudia Backes2, Amr M. Abdelkader3, Concepción Alonso4, Amandine Andrieux-Ledier5, Raul Arenal6, Raul Arenal7, Jon Azpeitia6, Nilanthy Balakrishnan8, Luca Banszerus9, Julien Barjon5, Ruben Bartali10, Sebastiano Bellani11, Claire Berger12, Claire Berger13, Reinhard Berger14, M.M. Bernal Ortega15, Carlo Bernard16, Peter H. Beton8, André Beyer17, Alberto Bianco18, Peter Bøggild19, Francesco Bonaccorso11, Gabriela Borin Barin20, Cristina Botas, Rebeca A. Bueno6, Daniel Carriazo21, Andres Castellanos-Gomez6, Meganne Christian, Artur Ciesielski18, Tymoteusz Ciuk, Matthew T. Cole, Jonathan N. Coleman1, Camilla Coletti11, Luigi Crema10, Huanyao Cun16, Daniela Dasler22, Domenico De Fazio3, Noel Díez, Simon Drieschner23, Georg S. Duesberg24, Roman Fasel20, Roman Fasel25, Xinliang Feng14, Alberto Fina15, Stiven Forti11, Costas Galiotis26, Costas Galiotis27, Giovanni Garberoglio28, Jorge M. Garcia6, Jose A. Garrido, Marco Gibertini29, Armin Gölzhäuser17, Julio Gómez, Thomas Greber16, Frank Hauke22, Adrian Hemmi16, Irene Hernández-Rodríguez6, Andreas Hirsch22, Stephen A. Hodge3, Yves Huttel6, Peter Uhd Jepsen19, I. Jimenez6, Ute Kaiser30, Tommi Kaplas31, HoKwon Kim29, Andras Kis29, Konstantinos Papagelis32, Konstantinos Papagelis27, Kostas Kostarelos33, Aleksandra Krajewska34, Kangho Lee24, Changfeng Li35, Harri Lipsanen35, Andrea Liscio, Martin R. Lohe14, Annick Loiseau5, Lucia Lombardi3, María Francisca López6, Oliver Martin22, Cristina Martín36, Lidia Martínez6, José A. Martín-Gago6, José I. Martínez6, Nicola Marzari29, Alvaro Mayoral7, Alvaro Mayoral37, John B. McManus1, Manuela Melucci, Javier Méndez6, Cesar Merino, Pablo Merino6, Andreas Meyer22, Elisa Miniussi16, Vaidotas Miseikis11, Neeraj Mishra11, Vittorio Morandi, Carmen Munuera6, Roberto Muñoz6, Hugo Nolan1, Luca Ortolani, A. K. Ott3, A. K. Ott38, Irene Palacio6, Vincenzo Palermo39, John Parthenios27, Iwona Pasternak40, Amalia Patanè8, Maurizio Prato41, Maurizio Prato21, Henri Prevost5, Vladimir Prudkovskiy12, Nicola M. Pugno42, Nicola M. Pugno43, Nicola M. Pugno44, Teófilo Rojo45, Antonio Rossi11, Pascal Ruffieux20, Paolo Samorì18, Léonard Schué5, Eki J. Setijadi10, Thomas Seyller46, Giorgio Speranza10, Christoph Stampfer9, I. Stenger5, Wlodek Strupinski40, Yuri Svirko31, Simone Taioli28, Simone Taioli47, Kenneth B. K. Teo, Matteo Testi10, Flavia Tomarchio3, Mauro Tortello15, Emanuele Treossi, Andrey Turchanin48, Ester Vázquez36, Elvira Villaro, Patrick Rebsdorf Whelan19, Zhenyuan Xia39, Rositza Yakimova, Sheng Yang14, G. Reza Yazdi, Chanyoung Yim24, Duhee Yoon3, Xianghui Zhang17, Xiaodong Zhuang14, Luigi Colombo49, Andrea C. Ferrari3, Mar García-Hernández6 
Trinity College, Dublin1, Heidelberg University2, University of Cambridge3, Autonomous University of Madrid4, Université Paris-Saclay5, Spanish National Research Council6, University of Zaragoza7, University of Nottingham8, RWTH Aachen University9, Kessler Foundation10, Istituto Italiano di Tecnologia11, University of Grenoble12, Georgia Institute of Technology13, Dresden University of Technology14, Polytechnic University of Turin15, University of Zurich16, Bielefeld University17, University of Strasbourg18, Technical University of Denmark19, Swiss Federal Laboratories for Materials Science and Technology20, Ikerbasque21, University of Erlangen-Nuremberg22, Technische Universität München23, Bundeswehr University Munich24, University of Bern25, University of Patras26, Foundation for Research & Technology – Hellas27, Center for Theoretical Studies, University of Miami28, École Polytechnique Fédérale de Lausanne29, University of Ulm30, University of Eastern Finland31, Aristotle University of Thessaloniki32, University of Manchester33, Polish Academy of Sciences34, Aalto University35, University of Castilla–La Mancha36, ShanghaiTech University37, University of Exeter38, Chalmers University of Technology39, Warsaw University of Technology40, University of Trieste41, Queen Mary University of London42, University of Trento43, Instituto Politécnico Nacional44, University of the Basque Country45, Chemnitz University of Technology46, Charles University in Prague47, University of Jena48, University of Texas at Dallas49
29 Jan 2020
TL;DR: In this article, the authors present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures, adopting a 'hands-on' approach, providing practical details and procedures as derived from literature and from the authors' experience, in order to enable the reader to reproduce the results.
Abstract: © 2020 The Author(s). We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resourceconsuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown.

330 citations

Journal ArticleDOI
TL;DR: The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates.
Abstract: The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

51 citations

Journal ArticleDOI
TL;DR: Large-area hexagonal boron nitride (h-BN) promises many new applications of two-dimensional materials, such as the protective packing of reactive surfaces or as membranes in liquids, but scalable production beyond exfoliation from bulk single crystals remained a major challenge.
Abstract: Large-area hexagonal boron nitride (h-BN) promises many new applications of two-dimensional materials, such as the protective packing of reactive surfaces or as membranes in liquids. However, scalable production beyond exfoliation from bulk single crystals remained a major challenge. Single-orientation monolayer h-BN nanomesh is grown on 4 in. wafer single crystalline rhodium films and transferred on arbitrary substrates such as SiO2, germanium, or transmission electron microscopy grids. The transfer process involves application of tetraoctylammonium bromide before electrochemical hydrogen delamination. The material performance is demonstrated with two applications. First, protective sealing of h-BN is shown by preserving germanium from oxidation in air at high temperatures. Second, the membrane functionality of the single h-BN layer is demonstrated in aqueous solutions. Here, we employ a growth substrate intrinsic preparation scheme to create regular 2 nm holes that serve as ion channels in liquids.

43 citations

Journal ArticleDOI
29 Oct 2018-ACS Nano
TL;DR: This work demonstrates the epitaxial growth of nominal monolayer (ML) MoSe2 on h-BN/Rh(111) by molecular beam epitaxy, where theMoSe2/h-BN layer system can be transferred from the growth substrate onto SiO2, demonstrating that the electronic properties, such as the direct band gap and the effective mass of ML MoSe 2, are well preserved in MoSe-BN heterostructures.
Abstract: Vertically stacked two-dimensional (2D) heterostructures composed of 2D semiconductors have attracted great attention. Most of these include hexagonal boron nitride (h-BN) as either a substrate, an encapsulant, or a tunnel barrier. However, reliable synthesis of large-area and epitaxial 2D heterostructures incorporating BN remains challenging. Here, we demonstrate the epitaxial growth of nominal monolayer (ML) MoSe2 on h-BN/Rh(111) by molecular beam epitaxy, where the MoSe2/h-BN layer system can be transferred from the growth substrate onto SiO2. The valence band structure of ML MoSe2/h-BN/Rh(111) revealed by photoemission electron momentum microscopy (kPEEM) shows that the valence band maximum located at the K point is 1.33 eV below the Fermi level (EF), whereas the energy difference between K and Γ points is determined to be 0.23 eV, demonstrating that the electronic properties, such as the direct band gap and the effective mass of ML MoSe2, are well preserved in MoSe2/h-BN heterostructures.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the surface segregation profile of an intermetallic compound becomes vertically and laterally modulated upon epitaxial growth of a single-layer hexagonal boron nitride nanomesh.
Abstract: The surface segregation profile of an intermetallic compound becomes vertically and laterally modulated upon epitaxial growth of a single-layer hexagonal boron nitride $(h$-BN) nanomesh. $h$-BN on PtRh(111) forms an 11-on-10 superhoneycomb, such as that on Rh(111) [Corso et al., Science 303, 217 (2004)], though with a smaller lattice constant of 2.73 nm. X-ray photoelectron diffraction shows that the $h$-BN layer reduces the Pt enrichment of the first layer by promoting site swapping of about 10 Pt-Rh pairs within the $10\ifmmode\times\else\texttimes\fi{}10$ unit cell between the first and second layers. This segregation profile is confirmed by density-functional-theory-based cluster-expansion calculations. Generally, a strong modulation of the $h$-BN bonding strength and a higher affinity to one of the constituents leads to self-assembly of top layer patches underneath the nanomesh pores.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There are a wide variety of processing routes that have been developed for 2D-hBN, including also those for doping, substitution, functionalization and combination with other materials to form heterostructures or h-BNC hybrid nanosheets, which are systematically elaborated for novel functions.
Abstract: Two dimensional hexagonal boron nitride (2D-hBN), an isomorph of graphene with a very similar layered structure, is uniquely featured by its exotic opto-electrical properties together with mechanical robustness, thermal stability, and chemical inertness. It is thus extensively studied for application in field effect transistors (FETs), tunneling devices, deep UV emitters and detectors, photoelectric devices, and nanofillers. 2D-hBN is considered as one of the most promising materials that can be integrated with other 2D materials, such as graphene and transition metal dichalcogenides (TMDCs), for the next generation microelectronic and other technologies. Although it is by itself an insulator, it can well be tuned by several strategies in terms of properties and functionalities, such as by doping, substitution, functionalization and hybridization, making 2D-hBN a truly versatile type of functional materials for a wide range of applications. In this review, the distinct structural characteristics of 2D-hBN, doping- and defect-induced variations in energy bands and structures, and resultant properties, are presented. There are a wide variety of processing routes that have been developed for 2D-hBN, including also those for doping, substitution, functionalization and combination with other materials to form heterostructures or h-BNC hybrid nanosheets, which are systematically elaborated for novel functions. The comprehensive overview provides the types of the state-of-the-art 2D-hBN made by new synthesis strategies, where the mainstream approaches include exfoliation, chemical vapor deposition, and gas phase epitaxy, together with several other new methods that have been successfully developed in the past few years. On the basis of the extraordinary electrical and functional properties and thermal–mechanical stability, the applications of hBN-based nanosheets as substrates and dielectrics, passivation layers, and nanofillers in nanodevices and nanocomposites are discussed, together with the peculiar optical and wetting characteristics.

643 citations

Dissertation
30 Apr 2007
TL;DR: In this paper, the discovery of superconductivity in intercalated graphite compounds C6Yb and C6Ca was discussed and a novel technique for synthesis of these intercalates has been developed, and is presented in detail.
Abstract: This thesis concerns the discovery of superconductivity in the intercalated graphite compounds C6Yb and C6Ca. A novel technique for synthesis of these intercalates has been developed, and is presented in detail. These two materials are shown to superconduct at 6.5K and 11.5K respectively. The superconductivity is demonstrated by measurements of the magnetisation and resistivity. Initial measurements of the superconducting transition of these materials as a function of pressure shows an increase in the transition with increasing pressure.

485 citations