scispace - formally typeset
Search or ask a question
Author

Carlo H. R. Heip

Bio: Carlo H. R. Heip is an academic researcher from Ghent University. The author has contributed to research in topics: Benthic zone & Meiobenthos. The author has an hindex of 49, co-authored 137 publications receiving 10488 citations.


Papers
More filters
Journal ArticleDOI
18 Jan 2013-Science
TL;DR: With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners are developing—and seeking consensus around—Essential Biod diversity Variables (EBVs) that could form the basis of monitoring programs worldwide.
Abstract: Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.

1,074 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that the calcification rates of the edible mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas) decline linearly with increasing CO2.
Abstract: [1] Ocean acidification resulting from human emissions of carbon dioxide has already lowered and will further lower surface ocean pH. The consequent decrease in calcium carbonate saturation potentially threatens calcareous marine organisms. Here, we demonstrate that the calcification rates of the edible mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas) decline linearly with increasing pCO2. Mussel and oyster calcification may decrease by 25 and 10%, respectively, by the end of the century, following the IPCC IS92a scenario (∼740 ppmv in 2100). Moreover, mussels dissolve at pCO2 values exceeding a threshold value of ∼1800 ppmv. As these two species are important ecosystem engineers in coastal ecosystems and represent a large part of worldwide aquaculture production, the predicted decrease of calcification in response to ocean acidification will probably have an impact on coastal biodiversity and ecosystem functioning as well as potentially lead to significant economic loss.

734 citations

Journal ArticleDOI
TL;DR: From an evolutionary perspective, recent investigations provide evidence that bioturbation had a key role in the evolution of metazoan life at the end of the Precambrian Era.
Abstract: Bioturbation refers to the biological reworking of soils and sediments, and its importance for soil processes and geomorphology was first realised by Charles Darwin, who devoted his last scientific book to the subject. Here, we review some new insights into the evolutionary and ecological role of bioturbation that would have probably amazed Darwin. In modern ecological theory, bioturbation is now recognised as an archetypal example of ‘ecosystem engineering’, modifying geochemical gradients, redistributing food resources, viruses, bacteria, resting stages and eggs. From an evolutionary perspective, recent investigations provide evidence that bioturbation had a key role in the evolution of metazoan life at the end of the Precambrian Era.

712 citations

Journal ArticleDOI
TL;DR: A central role for microphytobenthos in moderating carbon flow in coastal sediments is indicated, and C-13 assimilation increased until day 3, and carbon isotope analysis of polar lipid derived fatty acids specific for bacteria showed rapid, significant transfer from benthic algae to bacteria.
Abstract: At two intertidal sites (one sandy and one silty, in the Scheldt estuary, The Netherlands), the fate of microphytobenthos was studied through an in situ C-13 pulse- chase experiment. Label was added at the beginning of low tide, and uptake of C-13 by algae was linear during the whole period of tidal exposure (about 27 mg m(-2) h(-1) in the top millimeter at both sites). The C-13 fixed by microphytobenthos was rapidly displaced toward deeper sediment layers (down to 6 cm), in particular at the dynamic, sandy site. The residence times of microphytobenthos with respect to external losses (resuspension and respiration) were about 2.4 and 5.6 d at the sandy and silly stations, respectively. The transfer of carbon from microphytobenthos to benthic consumers was estimated from the appearance of C-13 in bacterial biomarkers, handpicked nematodes, and macrofauna. The incorporation of C-13 into bacterial biomass was quantified by carbon isotope analysis of polar lipid derived fatty acids specific for bacteria. The bacterial polar lipid-derived fatty acids (i14:0, i15:0, a15:0, i16:0, and 18:1 omega 7c) showed rapid, significant transfer from benthic algae to bacteria with maximum labeling after 1 d. Nematodes became enriched after 1 h, and C-13 assimilation increased until day 3. Microphytobenthos carbon entered all heterotrophic components in proportion to heterotrophic biomass distribution (bacteria > macrofauna > meiofauna). Our results indicate a central role for microphytobenthos in moderating carbon flow in coastal sediments. [KEYWORDS: Water marine habitats; microbenthic communities; westerschelde estuary; microbial biomass; epipelic diatoms; ecological role; organic-matter; grazing rates; chlorophyll-a; secret garden]

651 citations

Journal ArticleDOI
TL;DR: In this article, a quantitative degradation index that is directly related to the reactivity of the organic material, as indicated by its lability to enzymatic decay and its first-order degradation rate constant, was derived.
Abstract: Examination of amino acids in particulate samples from a variety of marine environments (fresh phytoplankton to deep-sea sediments) revealed systematic compositional changes upon progressive degradation. These consistent trends have been used to derive a quantitative degradation index (DI) that is directly related to the reactivity of the organic material, as indicated by its lability to enzymatic decay and its first-order degradation rate constant. This direct link between molecular composition and degradation rate allows us to quantify the quality of organic matter based solely on its chemical composition.

417 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr) and found that human activities increasingly dominate the N budget at the global and at most regional scales, and the terrestrial and open ocean N budgets are essentially dis-connected.
Abstract: This paper contrasts the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr). A variety of data sets are used to construct global N budgets for 1860 and the early 1990s and to make projections for the global N budget in 2050. Regional N budgets for Asia, North America, and other major regions for the early 1990s, as well as the marine N budget, are presented to highlight the dominant fluxes of nitrogen in each region. Important findings are that human activities increasingly dominate the N budget at the global and at most regional scales, the terrestrial and open ocean N budgets are essentially dis- connected, and the fixed forms of N are accumulating in most environmental reservoirs. The largest uncertainties in our understanding of the N budget at most scales are the rates of natural biological nitrogen fixation, the amount of Nr storage in most environmental reservoirs, and the production rates of N2 by denitrification.

4,555 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
03 Nov 2006-Science
TL;DR: The authors analyzed local experiments, long-term regional time series, and global fisheries data to test how biodiversity loss affects marine ecosystem services across temporal and spatial scales, concluding that marine biodiversity loss is increasingly impairing the ocean's capacity to provide food, maintain water quality, and recover from perturbations.
Abstract: Human-dominated marine ecosystems are experiencing accelerating loss of populations and species, with largely unknown consequences. We analyzed local experiments, long-term regional time series, and global fisheries data to test how biodiversity loss affects marine ecosystem services across temporal and spatial scales. Overall, rates of resource collapse increased and recovery potential, stability, and water quality decreased exponentially with declining diversity. Restoration of biodiversity, in contrast, increased productivity fourfold and decreased variability by 21%, on average. We conclude that marine biodiversity loss is increasingly impairing the ocean's capacity to provide food, maintain water quality, and recover from perturbations. Yet available data suggest that at this point, these trends are still reversible.

3,672 citations