scispace - formally typeset
Search or ask a question

Showing papers by "Carlo M. Croce published in 1976"


Journal ArticleDOI
TL;DR: In these mouse-human hybrids, unlike those that lose human chromosomes, only humanucleolus organizer activity is expressed, and mouse nucleolus organizers activity is suppressed.
Abstract: Most mouse-human somatic cell hybrids show preferential loss of human chromosomes, absence of human 28S ribosomal RNA, and suppression of human nucleolus organizer activity, as visualized by the Ag-AS silver histochemical stain. In contrast, the mouse-human hybrids studied here show preferential loss of mouse chromosomes. The hybrids were made by fusion of HT-1080-6TG human fibrosarcoma cells with BALB/c mouse peritoneal macrophages or strain 129 mouse teratocarcinoma cells. The Ag-AS staining method shows nucleolus organizer activity of chromosomes 13, 14, 15, 21 (rarely), and 22 in the human parent and chromosomes 12, 15, 16 (rarely), and 18 in the BALB/c mouse parent. In the hybrid cells the human nucleolus organizer regions are active, as shown by Ag-AS staining and involvement in "satellite association." The mouse nucleolus organizer regions are not stained by the Ag-AS method even though mouse chromosomes 12, 15, and 18 are present in the BALB/c hybrids and at least one copy of each mouse chromosome is present in the teratocarcinoma-derived hybrids. Thus, in these mouse-human hybrids, unlike those that lose human chromosomes, only human nucleolus organizer activity is expressed, and mouse nucleolus organizer activity is suppressed.

297 citations


Journal ArticleDOI
TL;DR: Somatic cell hybrids between mouse peritioneal macrophages and HT-1080 human fibrosarcoma cells lose mouse chromosomes and retain the entire complement of human chromosomes, while somatic cell hybrid hybrids between cells derived from two different mouse continuous cell lines and HT -1080 human cells were found to lose human chromosomes preferentially.
Abstract: Somatic cell hybrids between mouse peritioneal macrophages and HT-1080 human fibrosarcoma cells lose mouse chromosomes and retain the entire complement of human chromosomes. In contrast, somatic cell hybrids between cells derived from two different mouse continuous cell lines and HT-1080 human cells were found to lose human chromosomes preferentially. Loss of mouse chromosomes is not a general property of hybrids between mouse macrophages and transformed human cells; the hybridization of mouse macrophages with cells derived from five different human fibroblast lines transformed by simian virus 40 resulted in the production of hybrid clones that preferentially lost human chromosomes.

77 citations


Journal ArticleDOI
TL;DR: The results indicate that the linkage relationship between galactokinase and thymidine kinase has been maintained in 3 divergent primate species—man, chimpanzee, and Old World monkey.
Abstract: In this study we investigated the expression of primate galactokinase in somatic cell hybrids between a thymidine kinase-deficient mouse cell line and two different primate cell lines, one of which was derived from African green monkey kidney cells and the other from chimpanzee fibroblasts. All the African green monkey-mouse hybrid clones, selected in HAT medium, expressed monkey galactokinase activity and contained a monkey chromosome similar to a human E-group chromosome. When these clones were backselected in medium containing 5-bromodeoxyuridine, both this chromosome and the monkey galactokinase activity were lost. All the hybrid clones between mouse and chimpanzee cells, which were selected in HAT medium, contained the chimpanzee chromosome 17 and expressed chimpanzee galactokinase activity. These results indicate that the linkage relationship between galactokinase and thymidine kinase has been maintained in 3 divergent primate species—man, chimpanzee, and Old World monkey.

13 citations