scispace - formally typeset
Search or ask a question
Author

Carlo M. Croce

Bio: Carlo M. Croce is an academic researcher from Ohio State University. The author has contributed to research in topics: microRNA & Cancer. The author has an hindex of 198, co-authored 1135 publications receiving 189007 citations. Previous affiliations of Carlo M. Croce include University of Nebraska Medical Center & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: Using a DNA probe that is specific for the complete gene (c-myc), different somatic cell hybrids possessing varying numbers of human chromosomes were analyzed by the Southern blotting technique and results indicate that the human c- myc gene is located on chromosome 8.
Abstract: Human sequences related to the transforming gene (v-myc) of avian myelocytomatosis virus (MC29) are represented by at least one gene and several related sequences that may represent pseudogenes. By using a DNA probe that is specific for the complete gene (c-myc), different somatic cell hybrids possessing varying numbers of human chromosomes were analyzed by the Southern blotting technique. The results indicate that the human c-myc gene is located on chromosome 8. The analysis of hybrids between rodent cells and human Burkitt lymphoma cells, which carry a reciprocal translocation between chromosomes 8 and 14, allowed the mapping of the human c-myc gene on region (q24 leads to qter) of chromosome 8. This chromosomal region is translocated to either human chromosome 2, 14, or 22 in Burkitt lymphoma cells.

1,632 citations

Journal ArticleDOI
TL;DR: The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, and inhibits tumorigenicity in vitro and in vivo.
Abstract: MicroRNAs (miRNAs) are small, noncoding RNAs that regulate expression of many genes. Recent studies suggest roles of miRNAs in carcinogenesis. We and others have shown that expression profiles of miRNAs are different in lung cancer vs. normal lung, although the significance of this aberrant expression is poorly understood. Among the reported down-regulated miRNAs in lung cancer, the miRNA (miR)-29 family (29a, 29b, and 29c) has intriguing complementarities to the 3′-UTRs of DNA methyltransferase (DNMT)3A and -3B (de novo methyltransferases), two key enzymes involved in DNA methylation, that are frequently up-regulated in lung cancer and associated with poor prognosis. We investigated whether miR-29s could target DNMT3A and -B and whether restoration of miR-29s could normalize aberrant patterns of methylation in non-small-cell lung cancer. Here we show that expression of miR-29s is inversely correlated to DNMT3A and -3B in lung cancer tissues, and that miR-29s directly target both DNMT3A and -3B. The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, such as FHIT and WWOX, and inhibits tumorigenicity in vitro and in vivo. These findings support a role of miR-29s in epigenetic normalization of NSCLC, providing a rationale for the development of miRNA-based strategies for the treatment of lung cancer.

1,608 citations

Journal ArticleDOI
TL;DR: This review briefly describes miRNA biogenesis and discusses how miRNAs can act as oncogenes and tumor suppressors and the role of miRNAAs in the diagnosis, prognosis, and treatment of cancer.
Abstract: MicroRNAs (miRNAs) are small, noncoding RNAs with important functions in development, cell differentiation, and regulation of cell cycle and apoptosis. MiRNA expression is deregulated in cancer by a variety of mechanisms including amplification, deletion, mutation, and epigenetic silencing. Several studies have now shown that miRNAs are involved in the initiation and progression of cancer. In this review, we briefly describe miRNA biogenesis and discuss how miRNAs can act as oncogenes and tumor suppressors. We also address the role of miRNAs in the diagnosis, prognosis, and treatment of cancer.

1,599 citations

Journal ArticleDOI
TL;DR: Current knowledge about the involvement of microRNAs in cancer, and their potential as diagnostic, prognostic and therapeutic tools are reviewed.
Abstract: Early studies have shown how aberrantly expressed microRNAs are a hallmark of several diseases like cancer. MicroRNA expression profiling was shown to be associated with tumour development, progression and response to therapy, suggesting their possible use as diagnostic, prognostic and predictive biomarkers. Moreover, based on the increasing number of studies demonstrating that microRNAs can function as potential oncogenes or oncosuppressor genes, with the goal to improve disease response and increase cure rates, miRNA-based anticancer therapies have recently been exploited, either alone or in combination with current targeted therapies. The advantage of using microRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. Here, we review our current knowledge about the involvement of microRNAs in cancer, and their potential as diagnostic, prognostic and therapeutic tools.

1,565 citations

Journal ArticleDOI
TL;DR: This review focuses on how miRNAs regulate the development of human tumors by acting as tumor suppressors or oncogenes.
Abstract: MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that function in regulation of gene expression. Compelling evidences have demonstrated that miRNA expression is dysregulated in human cancer through various mechanisms, including amplification or deletion of miRNA genes, abnormal transcriptional control of miRNAs, dysregulated epigenetic changes and defects in the miRNA biogenesis machinery. MiRNAs may function as either oncogenes or tumor suppressors under certain conditions. The dysregulated miRNAs have been shown to affect the hallmarks of cancer, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, activating invasion and metastasis, and inducing angiogenesis. An increasing number of studies have identified miRNAs as potential biomarkers for human cancer diagnosis, prognosis and therapeutic targets or tools, which needs further investigation and validation. In this review, we focus on how miRNAs regulate the development of human tumors by acting as tumor suppressors or oncogenes.

1,535 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
TL;DR: This protocol provides an overview of the comparative CT method for quantitative gene expression studies and various examples to present quantitative gene Expression data using this method.
Abstract: Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.

20,580 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations