scispace - formally typeset
Search or ask a question
Author

Carlo M. Croce

Bio: Carlo M. Croce is an academic researcher from Ohio State University. The author has contributed to research in topics: microRNA & Cancer. The author has an hindex of 198, co-authored 1135 publications receiving 189007 citations. Previous affiliations of Carlo M. Croce include University of Nebraska Medical Center & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: The discovery, functions and clinical relevance of miR-15/16 and BCL2 are discussed, which took 32 years from fundamental discovery of a critical oncogene to the development of a drug capable to cure CLL.
Abstract: In 1984, we investigated the t(14;18) chromosomal translocations that frequently occur in patients with follicular lymphoma. We first identified a locus on chromosome 18 involved in these translocations with the chromosome 14 containing the immunoglobulin heavy chain locus. Within this region on chromosome 18, we then discovered a gene that we called BCL2, which was activated by the translocations. Since that time, many studies determined that BCL2 is one of the most important oncogenes involved in cancer by inhibiting apoptosis. In 2002, we studied 13q deletions in chronic lymphocytic leukemia (CLL) and found that the microRNA cluster miR-15a/miR-16-1 (miR-15/16) is deleted by 13q deletions. In 2005, we discovered that miR-15/16 function as tumor suppressors by directly targeting BCL2. Thus the loss of two negative regulators of BCL2 expression results in overexpression of BCL2. Very recently, a specific BCL2 inhibitor ABT-199 (Venetoclax) was developed and approved by FDA for CLL treatment. Thus it took 32 years from fundamental discovery of a critical oncogene to the development of a drug capable to cure CLL. In this review, we discuss the discovery, functions and clinical relevance of miR-15/16 and BCL2.

126 citations

Journal ArticleDOI
TL;DR: The possibility that translocation of the protein between the junctional membrane and the nucleus may be involved in adhesion-mediated signaling is considered, and the significance of huASH1 dual location is discussed.
Abstract: During animal development, regions of the embryo become committed to position-specific identities, which are determined by spatially restricted expression of Hox/homeotic genes. This expression pattern is initially established by the activity of the segmentation genes and is subsequently maintained during the proliferative stage through the action of transcription factors encoded by the trithorax (trx) and Polycomb (Pc) groups of genes. trithorax (trx)and ash1 (absent, small, or homeotic 1) are members of the Drosophila trx group. Their products are associated with chromosomes and are believed to activate transcription of target genes through chromatin remodeling. Recently, we reported molecular studies indicating that TRX and ASH1 proteins act in concert to bind simultaneously to response elements located at close proximity within the same set of target genes. Extension of these and other studies to mammalian systems required identification and cloning of the mammalian homologue of ash1 (the mammalian homologue of trx, ALL-1, was previously cloned). We have identified a human expressed sequence tag (EST) clone with similarity to the SET domain of Drosophila ASH1, and used it to clone the human gene. huASH1 resides at chromosomal band 1q21. The gene is expressed in multiple tissues as an ≈10.5-kb transcript and encodes a protein of 2962 residues. The protein contains a SET domain, a PHD finger, four AT hooks, and a region with homology to the bromodomain. The last region is not present in Drosophila ASH1, and as such might confer to the human protein a unique additional function. Using several anti-huASH1 Ab for immunostaining of cultured cells, we found that the protein is distributed in intranuclear speckles, and unexpectedly also in intercellular junctions. Double-immunofluorescence labeling of huASH1 and several junctional proteins localized the huASH1 protein into tight junctions. The significance of huASH1 dual location is discussed. In particular, we consider the possibility that translocation of the protein between the junctional membrane and the nucleus may be involved in adhesion-mediated signaling.

125 citations

Journal Article
TL;DR: It is found that 39% of the tumors revealed allelic loss in the region 11q22-23, and this loss was independent of LOH found to occur on 11p15, suggesting that this area contains a tumor suppressor gene frequently lost in breast cancer.
Abstract: Studies of loss of heterozygosity (LOH) in breast tumor DNA suggest that several tumor suppressor genes participate in the pathogenesis of breast cancer. Although the short arm of chromosome 11 has been implicated in breast cancer development, no previous LOH studies have indicated the involvement of a suppressor gene on 11q in breast carcinoma. To this end, tumor samples and corresponding normal tissue were collected from 62 unselected patients with primary breast cancer, and the extracted DNA was analyzed by polymerase chain reaction using microsatellite markers on chromosome 11. We found that 39% of the tumors (22 of 57 informative cases) revealed allelic loss in the region 11q22–23, and this loss was independent of LOH found to occur on 11p15. Interestingly, more than 90% of the tumors showed concordant loss of alleles at both 11q and 17p. The marker D11S528 , showing LOH in 39% of informative cases, had the highest frequency of LOH among the markers that were used. The data presented indicate that the common overlapping region of LOH is between the loci D11S35 and D11S29 , suggesting that this area contains a tumor suppressor gene frequently lost in breast cancer.

124 citations

Journal ArticleDOI
TL;DR: An essential requirement for the WWOX tumor suppressor in postnatal survival, growth, and metabolism is demonstrated and a central role for WWOX in regulation of bone tissue formation is suggested.

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
TL;DR: This protocol provides an overview of the comparative CT method for quantitative gene expression studies and various examples to present quantitative gene Expression data using this method.
Abstract: Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.

20,580 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations