scispace - formally typeset
Search or ask a question
Author

Carlo M. Croce

Bio: Carlo M. Croce is an academic researcher from Ohio State University. The author has contributed to research in topics: microRNA & Cancer. The author has an hindex of 198, co-authored 1135 publications receiving 189007 citations. Previous affiliations of Carlo M. Croce include University of Nebraska Medical Center & University of California, Los Angeles.


Papers
More filters
Journal Article
TL;DR: The minimal critical region of LOH at 11q22-23 is identical to that identified for other solid tumors, suggesting that the same putative tumor suppressor gene(s) contained within this region is involved in the pathogenesis of several common human tumors.
Abstract: Loss of heterozygosity (LOH) at several chromosomal loci is a common feature of the malignant progression of human tumors. In the case of chromosome 11, LOH has been well documented in several types of solid neoplasms, including gastric carcinoma, suggesting the presence of suppressor gene(s) at 11p15 and 11q22–23. Little is currently known about the molecular events occurring during the development of gastric cancer. To define the regions of chromosome 11 involved in gastric cancer progression, we used high-density polymorphic markers to screen for LOH in matched normal and tumor tissue DNA from 60 primary gastric carcinomas. We found that 21% of the tumors showed LOH simultaneously at 11p15 and 11q22–23, 41% had LOH at 11p15, and 30% had LOH at 11q22–23. We confirm that the minimal critical area of LOH for 11p15.5 is the approximately 2-Mb region between loci D11S1318 and D11S988 . However, when we analyzed the pattern of LOH according to the country of origin of the patient, LOH for 11q22–23 alone was found only in cases from Italy. The minimal critical region of LOH at 11q22–23 is identical to that identified for other solid tumors, suggesting that the same putative tumor suppressor gene(s) contained within this region is involved in the pathogenesis of several common human tumors.

97 citations

Journal Article
TL;DR: The presence of NPM gene rearrangements in HD indicates the involvement of this gene in a fraction of HD, and may identify a certain subtype in ALCL and HD which may be closely related.
Abstract: The (2;5)(p23;q35) translocation which results in the fusion of the NPM (nucleophosmin) gene on chromosome 5q35 with the novel ALK (anaplastic lymphoma kinase) gene on chromosome 2p23 [S.W. Morris et al., Science (Washington DC), 263: 1281–1284, 1994] is associated with Ki-1 (CD30)-positive anaplastic large cell lymphomas (ALCL); a group of morphologically and immunophenotypically heterogeneous high grade large cell lymphomas (LCL), which share many characteristics with Hodgkin9s disease (HD), including the presence of variable numbers of Reed-Sternberg-like cells and the expression of CD30 antigen. Using a DNA probe immediately 5′ to the NPM coding sequences, we have examined NPM gene rearrangements by Southern blotting in 5 Ki-1-positive lymphoma cell lines carrying a translocation involving the 5q35 breakpoint and in 25 Ki-positive lymphoma tumors, including 9 HD. Using this method, we detected rearrangements in all cell lines with apparent clustering of the breakpoints. Analysis of 25 Ki-1-positive lymphomas indicated that only 4 neoplasms, including two HD, had NPM gene rearrangements. Thus, our findings suggest that only a subset of ALCL has detectable involvement of the NPM gene. In addition, the presence of NPM gene rearrangements in HD indicates the involvement of this gene in a fraction of HD. Thus, NPM gene rearrangements may identify a certain subtype in ALCL and HD which may be closely related.

96 citations

Journal ArticleDOI
TL;DR: The present studies elucidate the mechanism responsible for the reduced female fertility through analysis of the oogenesis stages and early embryo development in Tcl1-deficient mice and observe an overexpression of TCL1 in human seminomas, suggesting that TCL 1 dysregulation could contribute to the development of this germinal cell cancer as well as lymphoid malignancies.
Abstract: Overexpression of the TCL1 oncogene has been shown to play a causative role in T cell leukemias of humans and mice. The characterization of Tcl1-deficient mice in these studies indicates an important developmental role for Tcl1 in early embryogenesis. In wild-type embryos, Tcl1 is abundant in the first three mitotic cycles, during which it shuttles between nuclei and the embryo cortical regions in a cell-cycle-dependent fashion. The absence of this protein in early embryogenesis results in reduced fertility of female mice. The present studies elucidate the mechanism responsible for the reduced female fertility through analysis of the oogenesis stages and early embryo development in Tcl1-deficient mice. Even though Tcl1−/− females display normal oogenesis and rates of oocyte maturation/ovulation and fertilization, the lack of maternally derived Tcl1 impairs the embryo's ability to undergo normal cleavage and develop to the morula stage, especially under in vitro culture conditions. Beyond this crisis point, differentiative traits of zygotic genome activation and embryo compaction can take place normally. In contrast with this unanticipated role in early embryogenesis, we observed an overexpression of TCL1 in human seminomas. This finding suggests that TCL1 dysregulation could contribute to the development of this germinal cell cancer as well as lymphoid malignancies.

95 citations

Journal Article
TL;DR: The results suggest that the cancer-specific deletions, which frequently involve introns 4 and 5, originated through breaks in fragile sites, with the highest frequency of gaps falling in intron 5 of the FHIT gene, less than 30 kb telomeric to FHit exon 5.
Abstract: The FHIT gene spans approximately 1 Mb of DNA at chromosome band 3p14.2, which includes the familial renal cell carcinoma chromosome translocation breakpoint (between FHIT exons 3 and 4), the most frequently expressed human constitutive chromosomal fragile site (FRA3B, telomeric to the t(3;8) translocation), and numerous homozygous deletions in various human cancers, frequently involving FHIT exon 5. The FRA3B has previously been shown to represent more than one specific site, and some specific representatives of FRA3B breaks have been shown to fall in two regions, which we know to be in FHIT introns 4 and intron 5. Because breakage and integration of exogenous DNA in this chromosome region is frequent in aphidicolin-treated somatic cell hybrids, cancer cells, and, presumably, aphidicolin-treated normal lymphocytes that exhibit gaps or breaks, we determined by one- and two color fluorescence in situ hybridization, using cosmids covering specific regions of the FHIT gene, that most of the aphidicolin-induced gaps at FRA3B fall within the FHIT gene, with the highest frequency of gaps falling in intron 5 of the FHIT gene, less than 30 kb telomeric to FHIT exon 5. Gaps also occur in intron 4, where a human papillomavirus 16 integration site has been localized, and in intron 3, where the t(3;8) break point is located. These results suggest that the cancer-specific deletions, which frequently involve introns 4 and 5, originated through breaks in fragile sites.

95 citations

Journal ArticleDOI
09 Jun 2015-Leukemia
TL;DR: It is suggested that by targeting a single miR, that is, miR-126, it is possible to interfere with LSC activity, thereby opening potentially novel therapeutic approaches to treat AML patients.
Abstract: Current treatments for acute myeloid leukemia (AML) are designed to target rapidly dividing blast populations with limited success in eradicating the functionally distinct leukemia stem cell (LSC) population, which is postulated to be responsible for disease resistance and relapse. We have previously reported high miR-126 expression levels to be associated with a LSC-gene expression profile. Therefore, we hypothesized that miR-126 contributes to 'stemness' and is a viable target for eliminating the LSC in AML. Here we first validate the clinical relevance of miR-126 expression in AML by showing that higher expression of this microRNA (miR) is associated with worse outcome in a large cohort of older (⩾60 years) cytogenetically normal AML patients treated with conventional chemotherapy. We then show that miR-126 overexpression characterizes AML LSC-enriched cell subpopulations and contributes to LSC long-term maintenance and self-renewal. Finally, we demonstrate the feasibility of therapeutic targeting of miR-126 in LSCs with novel targeting nanoparticles containing antagomiR-126 resulting in in vivo reduction of LSCs likely by depletion of the quiescent cell subpopulation. Our findings suggest that by targeting a single miR, that is, miR-126, it is possible to interfere with LSC activity, thereby opening potentially novel therapeutic approaches to treat AML patients.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
TL;DR: This protocol provides an overview of the comparative CT method for quantitative gene expression studies and various examples to present quantitative gene Expression data using this method.
Abstract: Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.

20,580 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations