scispace - formally typeset
Search or ask a question
Author

Carlo Magro

Bio: Carlo Magro is an academic researcher from STMicroelectronics. The author has contributed to research in topics: Digital holography & Holographic interferometry. The author has an hindex of 5, co-authored 11 publications receiving 478 citations.

Papers
More filters
Patent
05 Apr 2012
TL;DR: In this article, a galvanic-isolated coupling of circuit portions is accomplished on the basis of a stacked chip configuration, which can be fabricated on any appropriate process technology, thereby incorporating one or more coupling elements (220A,220B), such as primary or secondary coils of a micro transformer, wherein the final characteristics of the micro transformer are adjusted during the wafer bond process.
Abstract: A galvanic-isolated coupling of circuit portions is accomplished on the basis of a stacked chip configuration. The semiconductor chips (200A,200B) thus can be fabricated on the basis of any appropriate process technology, thereby incorporating one or more coupling elements (220A,220B), such as primary or secondary coils of a micro transformer, wherein the final characteristics of the micro transformer are adjusted during the wafer bond process.

5 citations

Proceedings ArticleDOI
TL;DR: In this article, the authors have applied digital holography (DH) as interferometric tool for measuring the out of plane deformation of Micro-Electro-Mechanical structures.
Abstract: We have applied digital holography (DH) as interferometric tool for measuring the out of plane deformation of Micro-Electro-Mechanical structures. DH has been adopted as method for determining with high accuracy deformations due to the residual stress introduced by fabrication process evaluating MEMS behavior subjected to thermal load. A thermal characterization of these structures requires to cope two fundamental problems. The first one regards the loss of the focus due to thermal expansion of the MEMS sample support. With an out-of-focus image, a correct reconstruction of the sample image can not be obtained. To overcome the problem an auto-tracking procedure has been adopted. The other problem regards the direct comparison of images reconstructed at two different distances. In fact, in DH the numerical reconstruction image is enlarged or contracted according to the reconstruction distance. To avoid this problem, we have adopted a novel but very simple method for keeping constant the image size by imposing the reconstruction pixel constant through the fictitious enlargement of the number of the pixel of the recorded digital holograms. These procedures have been employed in order to characterize MEMS with different shapes and dimensions. The measured profiles obtained by DH can be employed to evaluate both the residual stress induced during the fabrication processes and its dependence on the temperature.

4 citations

Proceedings ArticleDOI
27 May 2003
TL;DR: In this paper, a digital holography method was used as a metrological tool for inspection and characterization of MEMS structures, and the efficiency of the digital holographic method was demonstrated measuring out-of-plane deformations due to the intrinsic residual stress.
Abstract: We investigate digital holography method as metrological tool for inspection and characterization of MEMS structures. The efficiency of the digital holography is demonstrated measuring out of plane deformations due to the intrinsic residual stress. Microstructures under investigation are of two different types: the first are made of a single polysilicon layer, whereas the second are bimorph structures with a thin silicon nitride layer over the polysilicon one. These structures exhibit an out-of-plane deformation owing to residual stresses between the different layers. The characterization of these deformations is instrumental to study and understand the effect of residual stress on the deformation of the single microstructures. To this aim digital holography has been applied as metrological tool in order to obtain the profile of the microstructures. These data are employed in analytical and numerical model to evaluate residual stress inside the investigated structures. Moreover, digital holography has been employed to evaluate MEMS behavior when subjected to thermal load. Profile of cantilevers, with dimensions from 1 to 50 μm, has been measured.

3 citations

Patent
20 May 2014
TL;DR: In this article, a method for manufacturing a semiconductor power device, comprising the steps of: forming a trench in semiconductor body having a first type of conductivity; partially filling the trench with semiconductor material via epitaxial growth so as to obtain a first column having an internal cavity.
Abstract: A method for manufacturing a semiconductor power device, comprising the steps of: forming a trench in a semiconductor body having a first type of conductivity; partially filling the trench with semiconductor material via epitaxial growth so as to obtain a first column having a second type of conductivity and having an internal cavity. The epitaxial growth includes simultaneously supplying a gas containing dopant ions of the second type of conductivity, hydrochloric acid HCl in gaseous form and dichlorosilane DCS in gaseous form, so that the ratio between the amount of HCl and the amount of DCS has a value of from 3.5 to 5.5.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Digital holography is an emerging field of new paradigm in general imaging applications as discussed by the authors, and a review of a subset of the research and development activities in digital holographic microscopy techniques and applications is presented.
Abstract: Digital holography is an emerging field of new paradigm in general imaging applications. We present a review of a subset of the research and development activities in digital holography, with emphasis on microscopy techniques and applications. First, the basic results from the general theory of holography, based on the scalar diffraction theory, are summarized, and a general description of the digital holographic microscopy process is given, including quantitative phase microscopy. Several numerical diffraction methods are described and compared, and a number of representative configurations used in digital holography are described, including off-axis Fresnel, Fourier, image plane, in-line, Gabor, and phase-shifting digital holographies. Then we survey numerical techniques that give rise to unique capabilities of digital holography, including suppression of dc and twin image terms, pixel resolution control, optical phase unwrapping, aberration compensation, and others. A survey is also given of representative application areas, including biomedical microscopy, particle field holography, micrometrology, and holographic tomography, as well as some of the special techniques, such as holography of total internal reflection, optical scanning holography, digital interference holography, and heterodyne holography. The review is intended for students and new researchers interested in developing new techniques and exploring new applications of digital holography.

672 citations

Journal ArticleDOI
TL;DR: Digital holographic microscopy enables a quantitative phase contrast metrology that is suitable for the investigation of reflective surfaces as well as for the marker-free analysis of living cells.
Abstract: Digital holographic microscopy enables a quantitative phase contrast metrology that is suitable for the investigation of reflective surfaces as well as for the marker-free analysis of living cells. The digital holographic feature of (subsequent) numerical focus adjustment makes possible applications for multifocus imaging. An overview of digital holographic microscopy methods is described. Applications of digital holographic microscopy are demonstrated by results obtained from livings cells and engineered surfaces.

668 citations

Journal ArticleDOI
TL;DR: Techniques of digital holography are improved in order to obtain high-resolution, high-fidelity images of quantitative phase-contrast microscopy, and the angular spectrum method of calculating holographic optical field is seen to have significant advantages including tight control of spurious noise components.
Abstract: Techniques of digital holography are improved in order to obtain high-resolution, high-fidelity images of quantitative phase-contrast microscopy. In particular, the angular spectrum method of calculating holographic optical field is seen to have significant advantages including tight control of spurious noise components. Holographic phase images are obtained with 0.5 μm diffraction-limited lateral resolution and largely immune from the coherent noise common in other holographic techniques. The phase profile is accurate to about 30 nm of optical thickness. Images of SKOV-3 ovarian cancer cells display intracellular and intranuclear organelles with clarity and quantitative accuracy.

651 citations

Journal ArticleDOI
TL;DR: An approach is proposed for removing the wavefront curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes and it is shown that a correction effect can be obtained at all reconstruction planes.
Abstract: An approach is proposed for removing the wave front curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes. The unwanted curvature is compensated by evaluating a correcting wave front at the hologram plane with no need for knowledge of the optical parameters, focal length of the imaging lens, or distances in the setup. Most importantly it is shown that a correction effect can be obtained at all reconstruction planes. Three different methods have been applied to evaluate the correction wave front and the methods are discussed in detail. The proposed approach is demonstrated by applying digital holography as a method of coherent microscopy for imaging amplitude and phase contrast of microstructures.

406 citations

Journal ArticleDOI
TL;DR: A procedure that compensates for phase aberrations in digital holographic microscopy by computing a polynomial phase mask directly from the hologram, which enables one to reconstruct correct and accurate phase distributions, even in the presence of strong and high-order aberration.
Abstract: We present a procedure that compensates for phase aberrations in digital holographic microscopy by computing a polynomial phase mask directly from the hologram. The phase-mask parameters are computed automatically without knowledge of physical values such as wave vectors, focal lengths, or distances. This method enables one to reconstruct correct and accurate phase distributions, even in the presence of strong and high-order aberrations. Examples of applications are shown for microlens imaging and for compensating for the deformations associated with a tilted thick plate. Finally we show that this method allows compensation for the curvature of the specimen, revealing its surface defects and roughness. Examples of applications are shown for microlenses and metallic sphere imaging.

404 citations