scispace - formally typeset
Search or ask a question
Author

Carlo Reggiani

Other affiliations: University of Amsterdam, University of Siena, Lund University  ...read more
Bio: Carlo Reggiani is an academic researcher from University of Padua. The author has contributed to research in topics: Skeletal muscle & Myosin. The author has an hindex of 57, co-authored 266 publications receiving 16151 citations. Previous affiliations of Carlo Reggiani include University of Amsterdam & University of Siena.


Papers
More filters
Journal ArticleDOI
TL;DR: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors.
Abstract: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.

2,107 citations

Journal ArticleDOI
TL;DR: The pattern of isogene expression varies during muscle development in relation to the different origin of myogenic cells and primary/secondary fiber generations and is affected by neural and hormonal influences.
Abstract: Myofibrillar proteins exist as multiple isoforms that derive from multigene (isogene) families. Additional isoforms, including products of tropomyosin, myosin light chain 1 fast, troponin T, titin, and nebulin genes, can be generated from the same gene through alternative splicing or use of alternative promoters. Myofibrillar protein isogenes are differentially expressed in various muscle types and fiber types but can be coexpressed within the same fiber. Isogenes are regulated by transcriptional and posttranscriptional mechanisms; however, specific regulatory sequences and transcriptional factors have not yet been identified. The pattern of isogene expression varies during muscle development in relation to the different origin of myogenic cells and primary/secondary fiber generations and is affected by neural and hormonal influences. The variable expression of myofibrillar protein isoforms is a major determinant of the contractile properties of skeletal muscle fibers. The diversity among isomyosins is related to the differences in the parameters of chemomechanical transduction as ATP hydrolysis rate and shortening velocity. Troponin and tropomyosin isoforms determine the variable sensitivity to calcium, whereas titin isoforms dictate the elastic properties of muscle fibers at rest. Both myosin and troponin isoforms contribute to the differences in the resistance to fatigue of muscle fibers.

1,544 citations

Journal ArticleDOI
TL;DR: It is reported that muscle-specific deletion of a crucial autophagy gene, Atg7, resulted in profound muscle atrophy and age-dependent decrease in force and the results suggest that inhibition/alteration of Autophagy can contribute to myofiber degeneration and weakness in muscle disorders characterized by accumulation of abnormal mitochondria and inclusions.

1,047 citations

Journal ArticleDOI
TL;DR: The present review will describe the mechanisms through which molecular diversity is generated and how fibre types can be identified on the basis of structural and functional characteristics and discuss the advantage that fibre diversity can offer in optimizing muscle contractile performance.
Abstract: Contractile and energetic properties of human skeletal muscle have been studied for many years in vivo in the body. It has been, however, difficult to identify the specific role of muscle fibres in modulating muscle performance. Recently it has become possible to dissect short segments of single human muscle fibres from biopsy samples and make them work in nearly physiologic conditions in vitro. At the same time, the development of molecular biology has provided a wealth of information on muscle proteins and their genes and new techniques have allowed analysis of the protein isoform composition of the same fibre segments used for functional studies. In this way the histological identification of three main human muscle fibre types (I, IIA and IIX, previously called IIB) has been followed by a precise description of molecular composition and functional and biochemical properties. It has become apparent that the expression of different protein isoforms and therefore the existence of distinct muscle fibre phenotypes is one of the main determinants of the muscle performance in vivo. The present review will first describe the mechanisms through which molecular diversity is generated and how fibre types can be identified on the basis of structural and functional characteristics. Then the molecular and functional diversity will be examined with regard to (1) the myofibrillar apparatus; (2) the sarcolemma and the sarcoplasmic reticulum; and (3) the metabolic systems devoted to producing ATP. The last section of the review will discuss the advantage that fibre diversity can offer in optimizing muscle contractile performance.

515 citations

Journal ArticleDOI
TL;DR: The role of myosin heavy-chain (MHC) isoforms in skeletal muscle motility has been investigated by correlated biochemical-physiological studies on single skinned fibers, in agreement with results from in vitro motility assays as mentioned in this paper.
Abstract: Skeletal muscles of different mammalian species contain four major myosin heavy-chain (MHC) isoforms: the "slow" or beta-MHC and the three "fast" IIa-, IIx-, and IIb-MHCs; and three major myosin light-chain (MLC) isoforms, the "slow" MLC1s and the two "fast" MLC1f and MLC3f. The differential distribution of the MHCs defines four major fiber types containing a single MHC isoform and a number of intermediate hybrid fiber populations containing both beta/slow- and IIa-MHC, IIa- and IIx-MHC, or IIx- and IIb-MHC. The IIa-, IIx-, and IIb-MHCs were first detected in neonatal muscles, and their expression in developing and adult muscle is regulated by neural, hormonal, and mechanical factors. The transcriptional mechanisms responsible for the fiber type-specific regulation of MHC and MLC gene expression are not known and are presently being explored by in vivo transfection experiments. The functional role of MHC isoforms has been in part clarified by correlated biochemical-physiological studies on single skinned fibers: these studies, in agreement with results from in vitro motility assays, indicate that both MHC and MLC isoforms determine the maximum velocity of shortening of skeletal muscle fibers.

510 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
11 Nov 2011-Cell
TL;DR: It is explored how recent mouse models in combination with advances in human genetics are providing key insights into how the impairment or activation of autophagy contributes to pathogenesis of diverse diseases, from neurodegenerative diseases such as Parkinson disease to inflammatory disorders such as Crohn disease.

4,529 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
Qun Pan1, Ofer Shai1, Leo J. Lee1, Brendan J. Frey1, Benjamin J. Blencowe1 
TL;DR: It is estimated that transcripts from ∼95% of multiexon genes undergoAlternative splicing and that there are ∼100,000 intermediate- to high-abundance alternative splicing events in major human tissues.
Abstract: We carried out the first analysis of alternative splicing complexity in human tissues using mRNA-Seq data. New splice junctions were detected in approximately 20% of multiexon genes, many of which are tissue specific. By combining mRNA-Seq and EST-cDNA sequence data, we estimate that transcripts from approximately 95% of multiexon genes undergo alternative splicing and that there are approximately 100,000 intermediate- to high-abundance alternative splicing events in major human tissues. From a comparison with quantitative alternative splicing microarray profiling data, we also show that mRNA-Seq data provide reliable measurements for exon inclusion levels.

3,455 citations

Journal ArticleDOI
TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Abstract: Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.

3,340 citations