scispace - formally typeset
Search or ask a question
Author

Carlo Santini

Bio: Carlo Santini is an academic researcher from University of Camerino. The author has contributed to research in topics: Copper & Ligand. The author has an hindex of 35, co-authored 146 publications receiving 5560 citations. Previous affiliations of Carlo Santini include University of Milan & École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
TL;DR: This overview, collecting the most significant strategies adopted in the last ten years to design promising anticancer copper(I,II) compounds, would be a help to the researchers working in this field.
Abstract: Metal-based antitumor drugs play a relevant role in antiblastic chemotherapy. Cisplatin is regarded as one of the most effective drugs, even if severe toxicities and drug resistance phenomena limit its clinical use. Therefore, in recent years there has been a rapid expansion in research and development of novel metal-based anticancer drugs to improve clinical effectiveness, to reduce general toxicity and to broaden the spectrum of activity. The variety of metal ion functions in biology has stimulated the development of new metallodrugs other than Pt drugs with the aim to obtain compounds acting via alternative mechanisms of action. Among non-Pt compounds, copper complexes are potentially attractive as anticancer agents. Actually, since many years a lot of researches have actively investigated copper compounds based on the assumption proposal that endogenous metals may be less toxic. It has been established that the properties of copper-coordinated compounds are largely determined by the nature of ligands and donor atoms bound to the metal ion. In this review, the most remarkable achievements in the design and development of copper(I, II) complexes as antitumor agents are discussed. Special emphasis has been focused on the identification of structure-activity relationships for the different classes of copper(I,II) complexes. This work was motivated by the observation that no comprehensive surveys of copper complexes as anticancer agents were available in the literature. Moreover, up to now, despite the enormous efforts in synthesizing different classes of copper complexes, very few data concerning the molecular basis of the mechanisms underlying their antitumor activity are available. This overview, collecting the most significant strategies adopted in the last ten years to design promising anticancer copper(I,II) compounds, would be a help to the researchers working in this field.

646 citations

Journal ArticleDOI
TL;DR: Investigations into the occurrence of mechanisms of action quite different from platinum drugs head toward the development of new anticancer metallodrugs with improved specificity and decreased toxic side effects.
Abstract: Copper is found in all living organisms and is a crucial trace element in redox chemistry, growth and development. It is important for the function of several enzymes and proteins involved in energy metabolism, respiration, and DNA synthesis, notably cytochrome oxidase, superoxide dismutase, ascorbate oxidase, and tyrosinase. The major functions of copper-biological molecules involve oxidation-reduction reactions in which they react directly with molecular oxygen to produce free radicals. Therefore, copper requires tightly regulated homeostatic mechanisms to ensure adequate supplies without any toxic effects. Overload or deficiency of copper is associated, respectively, with Wilson disease (WD) and Menkes disease (MD), which are of genetic origin. Researches on Menkes and Wilson disorders have provided useful insights in the field of copper homeostasis and in particular into the understanding of intracellular trafficking and distribution of copper at molecular levels. Therapies based on metal supplementation with copper histidine or removal of copper excess by means of specific copper chelators are currently effective in treating MD and WD, respectively. Copper chelation therapy is now attracting much attention for the investigation and treatment of various neurodegenerative disorders such as Alzheimer, Parkinson and CreutzfeldtJakob. An excess of copper appears to be an essential co-factor for angiogenesis. Moreover, elevated levels of copper have been found in many types of human cancers, including prostate, breast, colon, lung, and brain. On these basis, the employment of copper chelators has been reported to be of therapeutic value in the treatment of several types of cancers as anti-angiogenic molecules. More recently, mixtures of copper chelators with copper salts have been found to act as efficient proteasome inhibitors and apoptosis inducers, specifically in cancer cells. Moreover, following the worldwide success of platinum(II) compounds in cancer chemotherapy, several families of individual copper complexes have been studied as potential antitumor agents. These investigations, revealing the occurrence of mechanisms of action quite different from platinum drugs, head toward the development of new anticancer metallodrugs with improved specificity and decreased toxic side effects.

580 citations

Journal ArticleDOI
TL;DR: Light is shed on the signaling pathways involved in paraptosis thus offering a new tool to overcome apoptosis‐resistance in colon cancer cells, and providing a mechanistic characterization of CP‐induced cancer cell death.
Abstract: Platinum anticancer drugs have been used for three decades despite their serious side effects and the emerging of resistance phenomena. Recently, a phosphine copper(I) complex, [Cu(thp)(4)][PF(6)] (CP), gained special attention because of its strong antiproliferative effects. CP killed human colon cancer cells more efficiently than cisplatin and oxaliplatin and it overcame platinum drug resistance. CP preferentially reduced cancer cell viability whereas non-tumour cells were poorly affected. Colon cancer cells died via a programmed cell death whose transduction pathways were characterized by the absence of hallmarks of apoptosis. The inhibition of 26S proteasome activities induced by CP caused intracellular accumulation of polyubiquitinated proteins and the functional suppression of the ubiquitin-proteasome pathway thus triggering endoplasmic reticulum stress. These data, providing a mechanistic characterization of CP-induced cancer cell death, shed light on the signaling pathways involved in paraptosis thus offering a new tool to overcome apoptosis-resistance in colon cancer cells.

131 citations

Journal ArticleDOI
TL;DR: Cytological stains and flow cytometric analyses indicated that the phosphine copper(I) complex is able to inhibit the growth of tumor cells via G2/M cell cycle arrest and paraptosis accompanied with the loss of mitochondrial transmembrane potential.
Abstract: Monocationic hydrophilic complexes [Cu(thp)4](+) 3 and [Cu(bhpe)2](+) 4 were synthesized by ligand exchange reactions starting from the labile [Cu(CH3CN)4][PF6] precursor in the presence of an excess of the relevant hydrophilic phosphine. Complexes 3 and 4 were tested against a panel of several human tumor cell lines. Complex 3 has been shown to be about 1 order of magnitude more cytotoxic than cisplatin. Chemosensitivity tests performed on cisplatin and multidrug resistance phenotypes suggested that complex 3 acts via a different mechanism of action than the reference drug. Different short-term proliferation assays suggested that lysosomal damage is an early cellular event associated with complex 3 cytotoxicity, probably mediated by an increased production of reactive oxygen species. Cytological stains and flow cytometric analyses indicated that the phosphine copper(I) complex is able to inhibit the growth of tumor cells via G2/M cell cycle arrest and paraptosis accompanied with the loss of mitochondrial transmembrane potential.

119 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new geometric parameter for four-coordinate compounds, tau(4), is proposed as an improved, simple metric for quantitatively evaluating the geometry of four- coordinate complexes and compounds.
Abstract: Four Cu(I) complexes were synthesized with a family of pyridylmethylamide ligands, HLR [HLR = N-(2-pyridylmethyl)acetamide, R = null; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me3; 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph3)]. Complexes 1–3 were synthesized from the respective ligand and [Cu(CH3CN)4]PF6 in a 2 : 1 molar ratio: [Cu(HL)2]PF6 (1), [Cu2(HLMe3)4](PF6)2 (2), [Cu(HLPh3)2]PF6 (3). Complex 4, [Cu(HL)(CH3CN)(PPh3)]PF6, was synthesized from the reaction of HL with [Cu(CH3CN)4]PF6 and PPh3 in a 1 : 1 : 1 molar ratio. X-Ray crystal structures reveal that complexes 1, 3 and 4 are mononuclear Cu(I) species, while complex 2 is a Cu(I) dimer. The copper ions are four-coordinate with geometries ranging from distorted tetrahedral to seesaw in 1, 2, and 4. Complexes 1 and 2 are very air sensitive and they display similar electrochemical properties. The coordination geometry of complex 3 is nearly linear, two-coordinate. Complex 3 is exceptionally stable with respect to oxidation in the air, and its cyclic voltammetry shows no oxidation wave in the range of 0–1.5 V. The unusual inertness of complex 3 towards oxidation is attributed to the protection from bulky triphenyl substituent of the HLPh3 ligand. A new geometric parameter for four-coordinate compounds, τ4, is proposed as an improved, simple metric for quantitatively evaluating the geometry of four-coordinate complexes and compounds.

2,281 citations

Journal ArticleDOI
TL;DR: In this article, the authors classified the catalytic cycles for the H2-hydrogenation (H) and transfer hydrogenation (T) of CO and cN bonds catalyzed by over 100 ruthenium hydride complexes in organic and aqueous media.

1,151 citations

Journal ArticleDOI
TL;DR: This work presents a meta-analysis of multi-NHCs Linked by Spacers and its applications in Catalysis and Nanomaterials, which shows clear trends in both the number and complexity of the components and their applications.
Abstract: 2.3.5. Multi-NHCs Linked by Spacers 3568 2.4. The Ag2O Route 3570 2.4.1. Feasibility 3570 2.4.2. Complications 3571 2.4.3. Theoretical Consideration 3572 2.5. Applications 3572 2.5.1. Ag(I)-NHCs in NHC Transfer 3572 2.5.2. Ag(I)-NHCs in Catalysis 3572 2.5.3. Ag(I)-NHCs in Medicine 3572 2.5.4. Ag(I)-NHCs in Nanomaterials 3573 3. Au(I)and Au(III)-NHCs 3573 3.1. Historical Background 3573 3.2. General Synthetic Methods 3573 3.3. Formation of Au(I)and Au(III)-NHCs 3574 3.3.1. Neutral [Au(NHC)L] 3574 3.3.2. Ionic [Au(NHC)L][Anion] 3576 3.3.3. Multinuclear Au(I)-NHCs 3578 3.3.4. Other Classes of Au(I)-NHCs 3578 3.3.5. Au(III)-NHC Complexes 3579 3.4. Applications 3579 3.4.1. Au(I)and Au(III)-NHCs in Catalysis 3579 3.4.2. Au(I)-NHCs in Medicine 3580 4. Cu(I)and Cu(II)-NHCs 3581 4.1. Historical Background 3581 4.2. General Synthetic Methods 3582 4.3. Formation of Cu(I)and Cu(II)-NHCs 3583 4.3.1. Complexes Containing the Cu(NHC)2 Core 3583 4.3.2. [Cu(NHC)(Halide)] 3583 4.3.3. [Cu(NHC)(Ligand)] 3584 4.3.4. Multinuclear Cu(I)and Cu(II)-NHCs 3589 4.4. Catalysis 3591 4.4.1. Past Events 3591 4.4.2. Recent Advancements 3591 5. Photoluminescence 3592 6. Conclusions 3594 7. Abbreviations 3594 8. Acknowledgments 3595 9. References 3595

906 citations