scispace - formally typeset
Search or ask a question
Author

Carlos A. Guzmán

Bio: Carlos A. Guzmán is an academic researcher from University of Genoa. The author has contributed to research in topics: Immune system & Antigen. The author has an hindex of 54, co-authored 260 publications receiving 9506 citations. Previous affiliations of Carlos A. Guzmán include Hannover Medical School & Bill & Melinda Gates Foundation.


Papers
More filters
Journal ArticleDOI
11 Nov 2010-Blood
TL;DR: It is shown that CD56(dim) NK cells continue to differentiate, and the associated functional imprint, occurs independently of NK-cell education by interactions with self-human leukocyte antigen class I ligands and is an essential part of the formation of human NK- cell repertoires.

622 citations

Journal ArticleDOI
12 Dec 1997-Cell
TL;DR: A highly versatile system for antigen delivery, identification of protective antigens for vaccination, and efficient generation of antibodies against the product of open reading frames present on virtually any DNA segment is described.

446 citations

Journal ArticleDOI
TL;DR: It is the first time that RNA standards have been successfully used for a precise quantification of the number of RNA molecules in prokaryotes and demonstrates the potential of this approach for determining the presence and metabolic activity of pathogenic bacteria in environmental samples.
Abstract: Quantitative PCR (Q-PCR) is a fast and efficient tool to quantify target genes. In eukaryotic cells, quantitative reverse transcription-PCR (Q-RT-PCR) is also used to quantify gene expression, with stably expressed housekeeping genes as standards. In bacteria, such stable expression of housekeeping genes does not occur, and the use of DNA standards leads to a broad underestimation. Therefore, an accurate quantification of RNA is feasible only by using appropriate RNA standards. We established and validated a Q-PCR method which enables the quantification of not only the number of copies of target genes (i.e., the number of bacterial cells) but also the number of RNA copies. The genes coding for InvA and the 16S rRNA of Salmonella enterica serovar Typhimurium were selected for the evaluation of the method. As DNA standards, amplified fragments of the target genes were used, whereas the same DNA standards were transcribed in vitro for the development of appropriate RNA standards. Salmonella cultures and environmental water samples inoculated with bacteria were then employed for the final testing. Both experimental approaches led to a sensitive, accurate, and reproducible quantification of the selected target genes and RNA molecules by Q-PCR and Q-RT-PCR. It is the first time that RNA standards have been successfully used for a precise quantification of the number of RNA molecules in prokaryotes. This demonstrates the potential of this approach for determining the presence and metabolic activity of pathogenic bacteria in environmental samples.

226 citations

Journal ArticleDOI
TL;DR: The potential and challenges of humanized mouse models for developing effective and affordable therapies and vaccines, which are desperately needed to combat these diseases, are discussed.

224 citations

Journal ArticleDOI
01 Nov 1998-Blood
TL;DR: It is shown here, for the first time, that DCs can be directly and specifically transduced in vivo such to induce DNA vaccination against tumors.

182 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The current level of understanding of the pathogenesis of the diarrheagenic E. coli strains is discussed and how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens are described.
Abstract: Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.

4,863 citations

Journal ArticleDOI
08 Jun 2012-Science
TL;DR: Advances in understanding of the interactions between resident microbes and the immune system are reviewed and the implications for human health are reviewed.
Abstract: The large numbers of microorganisms that inhabit mammalian body surfaces have a highly coevolved relationship with the immune system. Although many of these microbes carry out functions that are critical for host physiology, they nevertheless pose the threat of breach with ensuing pathologies. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, thus ensuring that the mutualistic nature of the host-microbial relationship is maintained. At the same time, resident bacteria profoundly shape mammalian immunity. Here, we review advances in our understanding of the interactions between resident microbes and the immune system and the implications of these findings for human health.

3,330 citations

Journal ArticleDOI
TL;DR: A detailed overview of mRNA vaccines is provided and future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use are considered.
Abstract: mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.

2,274 citations

Journal ArticleDOI
TL;DR: The molecular determinants of Listeria virulence and their mechanism of action are described and the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listersia infection is summarized.
Abstract: The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.

2,139 citations