scispace - formally typeset
Search or ask a question
Author

Carlos A. Quesada

Bio: Carlos A. Quesada is an academic researcher from National Institute of Amazonian Research. The author has contributed to research in topics: Soil water & Amazon rainforest. The author has an hindex of 49, co-authored 119 publications receiving 11479 citations. Previous affiliations of Carlos A. Quesada include Max Planck Society & University of Leeds.


Papers
More filters
Journal ArticleDOI
06 Mar 2009-Science
TL;DR: Records from multiple long-term monitoring plots across Amazonia are used to assess forest responses to the intense 2005 drought, a possible analog of future events that may accelerate climate change through carbon losses and changed surface energy balances.
Abstract: Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.

1,545 citations

Journal ArticleDOI
Roel J. W. Brienen1, Oliver L. Phillips1, Ted R. Feldpausch1, Ted R. Feldpausch2, Emanuel Gloor1, Timothy R. Baker1, Jon Lloyd3, Jon Lloyd4, Gabriela Lopez-Gonzalez1, Abel Monteagudo-Mendoza, Yadvinder Malhi5, Simon L. Lewis6, Simon L. Lewis1, R. Vásquez Martínez, Miguel Alexiades7, E. Alvarez Dávila, Patricia Alvarez-Loayza8, Ana Andrade9, Luiz E. O. C. Aragão2, Luiz E. O. C. Aragão10, Alejandro Araujo-Murakami11, Eric Arets12, Luzmila Arroyo11, Olaf Bánki13, Christopher Baraloto14, Christopher Baraloto15, Jorcely Barroso16, Damien Bonal15, René G. A. Boot17, José Luís Camargo9, Carolina V. Castilho18, V. Chama, Kuo-Jung Chao19, Kuo-Jung Chao1, Jérôme Chave20, James A. Comiskey21, F. Cornejo Valverde22, L da Costa23, E. A. de Oliveira24, A. Di Fiore25, Terry L. Erwin26, Sophie Fauset1, Mônica Forsthofer24, David W. Galbraith1, E S Grahame1, Nikée Groot1, Bruno Hérault, Niro Higuchi9, E.N. Honorio Coronado1, E.N. Honorio Coronado22, Helen C. Keeling1, Timothy J. Killeen27, William F. Laurance4, Susan G. Laurance4, Juan Carlos Licona, W E Magnussen, Beatriz Schwantes Marimon24, Ben Hur Marimon-Junior24, Casimiro Mendoza28, David A. Neill, Euler Melo Nogueira, Pablo Núñez, N. C. Pallqui Camacho, Alexander Parada11, G. Pardo-Molina, Julie Peacock1, Marielos Peña-Claros12, Georgia Pickavance1, Nigel C. A. Pitman8, Nigel C. A. Pitman29, Lourens Poorter12, Adriana Prieto30, Carlos A. Quesada, Fredy Ramírez30, Hirma Ramírez-Angulo31, Zorayda Restrepo, Anand Roopsind, Agustín Rudas32, Rafael de Paiva Salomão33, Michael P. Schwarz1, Natalino Silva, Javier E. Silva-Espejo, Marcos Silveira16, Juliana Stropp, Joey Talbot1, H. ter Steege34, H. ter Steege35, J Teran-Aguilar, John Terborgh8, Raquel Thomas-Caesar, Marisol Toledo, Mireia Torello-Raventos4, Ricardo Keichi Umetsu24, G. M. F. van der Heijden36, G. M. F. van der Heijden37, G. M. F. van der Heijden38, P. van der Hout, I. C. Guimarães Vieira33, Simone Aparecida Vieira39, Emilio Vilanova31, Vincent A. Vos, Roderick Zagt17 
19 Mar 2015-Nature
TL;DR: It is confirmed that Amazon forests have acted as a long-term net biomass sink, but the observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models
Abstract: Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

767 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a new synthesis and interpolation of the basal area and aboveground live biomass of old-growth lowland tropical forests across South America, based on data from 227 forest plots, many previously unpublished.
Abstract: The biomass of tropical forests plays an important role in the global carbon cycle, both as a dynamic reservoir of carbon, and as a source of carbon dioxide to the atmosphere in areas undergoing deforestation. However, the absolute magnitude and environmental determinants of tropical forest biomass are still poorly understood. Here, we present a new synthesis and interpolation of the basal area and aboveground live biomass of old-growth lowland tropical forests across South America, based on data from 227 forest plots, many previously unpublished. Forest biomass was analyzed in terms of two uncorrelated factors: basal area and mean wood density. Basal area is strongly affected by local landscape factors, but is relatively invariant at regional scale in moist tropical forests, and declines significantly at the dry periphery of the forest zone. Mean wood density is inversely correlated with forest dynamics, being lower in the dynamic forests of western Amazonia and high in the slow-growing forests of eastern Amazonia. The combination of these two factors results in biomass being highest in the moderately seasonal, slow growing forests of central Amazonia and the Guyanas (up to 350?Mg?dry weight?ha?1) and declining to 200-250?Mg?dry weight?ha?1 at the western, southern and eastern margins. Overall, we estimate the total aboveground live biomass of intact Amazonian rainforests (area 5.76 × 106?km2 in 2000) to be 93±23?Pg?C, taking into account lianas and small trees. Including dead biomass and belowground biomass would increase this value by approximately 10% and 21%, respectively, but the spatial variation of these additional terms still needs to be quantified

600 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of soil fertility in forest structure and dynamics in the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology and found that soil fertility may play an important role in explaining Basinwide variations in forest biomass, growth and stem turnover rates.
Abstract: . Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin.

505 citations

Journal ArticleDOI
TL;DR: It is indicated that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.
Abstract: The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.

499 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations