scispace - formally typeset
Search or ask a question
Author

Carlos Bustamante

Bio: Carlos Bustamante is an academic researcher from Stanford University. The author has contributed to research in topics: Population & Optical tweezers. The author has an hindex of 161, co-authored 770 publications receiving 106053 citations. Previous affiliations of Carlos Bustamante include Lawrence Berkeley National Laboratory & University of California.


Papers
More filters
Journal ArticleDOI
03 Apr 2008-Nature
TL;DR: Pause lengths, and thus the overall rate of translation, depend on the secondary structure of the mRNA; the applied force destabilizes secondary structure and decreases pause durations, but does not affect translocation times.
Abstract: We have followed individual ribosomes as they translate single messenger RNA hairpins tethered by the ends to optical tweezers. Here we reveal that translation occurs through successive translocation-and-pause cycles. The distribution of pause lengths, with a median of 2.8 s, indicates that at least two rate-determining processes control each pause. Each translocation step measures three bases—one codon—and occurs in less than 0.1 s. Analysis of the times required for translocation reveals, surprisingly, that there are three substeps in each step. Pause lengths, and thus the overall rate of translation, depend on the secondary structure of the mRNA; the applied force destabilizes secondary structure and decreases pause durations, but does not affect translocation times. Translocation and RNA unwinding are strictly coupled ribosomal functions.

478 citations

Journal ArticleDOI
TL;DR: It is found that recent adaptation is strikingly pervasive in the human genome, with as much as 10% of the genome affected by linkage to a selective sweep.
Abstract: Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome with very strong evidence (p < 10(-5)) of a recent selective sweep and where our estimate of the position of the selective sweep falls within 100 kb of a known gene. Within these regions, genes of biological interest include genes in pigmentation pathways, components of the dystrophin protein complex, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome, with as much as 10% of the genome affected by linkage to a selective sweep.

477 citations

Journal ArticleDOI
13 Feb 2014-Nature
TL;DR: The genome sequence of a male infant recovered from the Anzick burial site in western Montana is sequenced and it is shown that the gene flow from the Siberian Upper Palaeolithic Mal’ta population into Native American ancestors is also shared by the AnZick-1 individual and thus happened before 12,600 years bp.
Abstract: Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 C-14 years before present (BP) (13,000 to 12,600 calendar years BP)(1,2). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology(3). However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans(2). An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum(4). Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 +/- 35 C-14 years BP (approximately 12,707-12,556 calendar years BP) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4x and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population(5) into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years BP. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.

464 citations

Journal ArticleDOI
Maanasa Raghavan1, Matthias Steinrücken2, Matthias Steinrücken3, Kelley Harris2, Stephan Schiffels4, Simon Rasmussen5, Michael DeGiorgio6, Anders Albrechtsen1, Cristina Valdiosera1, Cristina Valdiosera7, María C. Ávila-Arcos1, María C. Ávila-Arcos8, Anna-Sapfo Malaspinas1, Anders Eriksson9, Anders Eriksson10, Ida Moltke1, Mait Metspalu11, Mait Metspalu12, Julian R. Homburger8, Jeffrey D. Wall13, Omar E. Cornejo14, J. Víctor Moreno-Mayar1, Thorfinn Sand Korneliussen1, Tracey Pierre1, Morten Rasmussen1, Morten Rasmussen8, Paula F. Campos1, Paula F. Campos15, Peter de Barros Damgaard1, Morten E. Allentoft1, John Lindo16, Ene Metspalu11, Ene Metspalu12, Ricardo Rodríguez-Varela17, Josefina Mansilla, Celeste Henrickson18, Andaine Seguin-Orlando1, Helena Malmström19, Thomas W. Stafford1, Thomas W. Stafford20, Suyash Shringarpure8, Andrés Moreno-Estrada8, Monika Karmin11, Monika Karmin12, Kristiina Tambets12, Anders Bergström4, Yali Xue4, Vera Warmuth21, Andrew D. Friend10, Joy S. Singarayer22, Paul J. Valdes23, Francois Balloux, Ilán Leboreiro, Jose Luis Vera, Héctor Rangel-Villalobos24, Davide Pettener25, Donata Luiselli25, Loren G. Davis26, Evelyne Heyer27, Christoph P. E. Zollikofer28, Marcia S. Ponce de León28, Colin Smith7, Vaughan Grimes29, Vaughan Grimes30, Kelly-Anne Pike30, Michael Deal30, Benjamin T. Fuller31, Bernardo Arriaza32, Vivien G. Standen32, Maria F. Luz, Francois Ricaut33, Niede Guidon, Ludmila P. Osipova34, Ludmila P. Osipova35, Mikhail Voevoda35, Mikhail Voevoda34, Olga L. Posukh35, Olga L. Posukh34, Oleg Balanovsky, Maria Lavryashina36, Yuri Bogunov, Elza Khusnutdinova37, Elza Khusnutdinova35, Marina Gubina, Elena Balanovska, Sardana A. Fedorova38, Sergey Litvinov35, Sergey Litvinov12, Boris Malyarchuk35, Miroslava Derenko35, M. J. Mosher39, David Archer40, Jerome S. Cybulski41, Jerome S. Cybulski42, Barbara Petzelt, Joycelynn Mitchell, Rosita Worl, Paul Norman8, Peter Parham8, Brian M. Kemp14, Toomas Kivisild10, Toomas Kivisild12, Chris Tyler-Smith4, Manjinder S. Sandhu43, Manjinder S. Sandhu4, Michael H. Crawford44, Richard Villems11, Richard Villems12, David Glenn Smith45, Michael R. Waters46, Ted Goebel46, John R. Johnson47, Ripan S. Malhi16, Mattias Jakobsson19, David J. Meltzer48, David J. Meltzer1, Andrea Manica10, Richard Durbin4, Carlos Bustamante8, Yun S. Song2, Rasmus Nielsen2, Eske Willerslev1 
21 Aug 2015-Science
TL;DR: The results suggest that there has been gene flow between some Native Americans from both North and South America and groups related to East Asians and Australo-Melanesians, the latter possibly through an East Asian route that might have included ancestors of modern Aleutian Islanders.
Abstract: How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericues and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.

459 citations

Journal ArticleDOI
01 Jul 2007-Genetics
TL;DR: The popular Bayesian clustering approach STRUCTURES is extended for simultaneous inference of inbreeding or selfing rates and population-of-origin classification using multilocus genetic markers and it is shown that selfing leads to spurious signals of population substructure using the standard STRUCTURE algorithm with a bias toward spurious signal of admixture.
Abstract: Nonrandom mating induces correlations in allelic states within and among loci that can be exploited to understand the genetic structure of natural populations (Wright 1965). For many species, it is of considerable interest to quantify the contribution of two forms of nonrandom mating to patterns of standing genetic variation: inbreeding (mating among relatives) and population substructure (limited dispersal of gametes). Here, we extend the popular Bayesian clustering approach STRUCTURE (Pritchard et al. 2000) for simultaneous inference of inbreeding or selfing rates and population-of-origin classification using multilocus genetic markers. This is accomplished by eliminating the assumption of Hardy–Weinberg equilibrium within clusters and, instead, calculating expected genotype frequencies on the basis of inbreeding or selfing rates. We demonstrate the need for such an extension by showing that selfing leads to spurious signals of population substructure using the standard STRUCTURE algorithm with a bias toward spurious signals of admixture. We gauge the performance of our method using extensive coalescent simulations and demonstrate that our approach can correct for this bias. We also apply our approach to understanding the population structure of the wild relative of domesticated rice, Oryza rufipogon, an important partially selfing grass species. Using a sample of n = 16 individuals sequenced at 111 random loci, we find strong evidence for existence of two subpopulations, which correlates well with geographic location of sampling, and estimate selfing rates for both groups that are consistent with estimates from experimental data (s ≈ 0.48–0.70).

457 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.

14,558 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations