scispace - formally typeset
Search or ask a question
Author

Carlos Bustamante

Bio: Carlos Bustamante is an academic researcher from Stanford University. The author has contributed to research in topics: Population & Optical tweezers. The author has an hindex of 161, co-authored 770 publications receiving 106053 citations. Previous affiliations of Carlos Bustamante include Lawrence Berkeley National Laboratory & University of California.


Papers
More filters
Journal ArticleDOI
03 Dec 2015-Cell
TL;DR: A reference genome is assembled for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics and the identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan.

190 citations

Journal ArticleDOI
TL;DR: This work introduces an RNA sequencing method, synthetic long-read RNA sequencing (SLR-RNA-seq), in which small pools of full-length cDNAs are amplified, fragmented and short-read-sequenced, and indicates conserved mechanisms that can produce distant but phased features on transcript and proteome isoforms.
Abstract: Illumina-based synthetic long read RNA-seq enables comprehensive analysis of alternative splicing in transcriptomes.

185 citations

Journal ArticleDOI
TL;DR: The results show that beacons can disclose membership and implied phenotypic information about participants and do not protect privacy a priori and discuss risk mitigation through policies and standards such as not allowing anonymous pings of genetic beacons and requiring minimum beacon sizes.
Abstract: The human genetics community needs robust protocols that enable secure sharing of genomic data from participants in genetic research. Beacons are web servers that answer allele-presence queries—such as “Do you have a genome that has a specific nucleotide (e.g., A) at a specific genomic position (e.g., position 11,272 on chromosome 1)?”—with either “yes” or “no.” Here, we show that individuals in a beacon are susceptible to re-identification even if the only data shared include presence or absence information about alleles in a beacon. Specifically, we propose a likelihood-ratio test of whether a given individual is present in a given genetic beacon. Our test is not dependent on allele frequencies and is the most powerful test for a specified false-positive rate. Through simulations, we showed that in a beacon with 1,000 individuals, re-identification is possible with just 5,000 queries. Relatives can also be identified in the beacon. Re-identification is possible even in the presence of sequencing errors and variant-calling differences. In a beacon constructed with 65 European individuals from the 1000 Genomes Project, we demonstrated that it is possible to detect membership in the beacon with just 250 SNPs. With just 1,000 SNP queries, we were able to detect the presence of an individual genome from the Personal Genome Project in an existing beacon. Our results show that beacons can disclose membership and implied phenotypic information about participants and do not protect privacy a priori. We discuss risk mitigation through policies and standards such as not allowing anonymous pings of genetic beacons and requiring minimum beacon sizes.

184 citations

Journal ArticleDOI
05 May 2017-Science
TL;DR: The analysis of the genetic diversity of Bantu speakers revealed adaptive introgression of genes that likely originated in other African populations, including specific immune-related genes, and applied this information to African Americans suggests that gene flow from Africa into the Americas was more complex than previously thought.
Abstract: Bantu languages are spoken by about 310 million Africans, yet the genetic history of Bantu-speaking populations remains largely unexplored. We generated genomic data for 1318 individuals from 35 populations in western central Africa, where Bantu languages originated. We found that early Bantu speakers first moved southward, through the equatorial rainforest, before spreading toward eastern and southern Africa. We also found that genetic adaptation of Bantu speakers was facilitated by admixture with local populations, particularly for the HLA and LCT loci. Finally, we identified a major contribution of western central African Bantu speakers to the ancestry of African Americans, whose genomes present no strong signals of natural selection. Together, these results highlight the contribution of Bantu-speaking peoples to the complex genetic history of Africans and African Americans.

183 citations

Journal ArticleDOI
TL;DR: The source of genetic diversity in southern Europe has important biomedical implications and it is found that most disease risk alleles from genome-wide association studies follow expected patterns of divergence between Europe and North Africa, with the principal exception of multiple sclerosis.
Abstract: Human genetic diversity in southern Europe is higher than in other regions of the continent. This difference has been attributed to postglacial expansions, the demic diffusion of agriculture from the Near East, and gene flow from Africa. Using SNP data from 2,099 individuals in 43 populations, we show that estimates of recent shared ancestry between Europe and Africa are substantially increased when gene flow from North Africans, rather than Sub-Saharan Africans, is considered. The gradient of North African ancestry accounts for previous observations of low levels of sharing with Sub-Saharan Africa and is independent of recent gene flow from the Near East. The source of genetic diversity in southern Europe has important biomedical implications; we find that most disease risk alleles from genome-wide association studies follow expected patterns of divergence between Europe and North Africa, with the principal exception of multiple sclerosis.

182 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.

14,558 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations