scispace - formally typeset
Search or ask a question
Author

Carlos Bustamante

Bio: Carlos Bustamante is an academic researcher from Stanford University. The author has contributed to research in topics: Population & Optical tweezers. The author has an hindex of 161, co-authored 770 publications receiving 106053 citations. Previous affiliations of Carlos Bustamante include Lawrence Berkeley National Laboratory & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the precise positioning of a carbon nanotube on an atomic force microscope (AFM) tip was reported. And the performance of these tips for AFM imaging was demonstrated by improved lateral resolution of DNA molecules.
Abstract: We report on the precise positioning of a carbon nanotube on an atomic force microscope (AFM) tip. By using a nanomanipulator inside a scanning electron microscope, an individual nanotube was retrieved from a metal foil by the AFM tip. The electron beam allows us to control the nanotube length and to sharpen its end. The performance of these tips for AFM imaging is demonstrated by improved lateral resolution of DNA molecules.

94 citations

Journal ArticleDOI
20 Feb 2008-Virology
TL;DR: Cryo-EM images of bacteriophage that had packaged defined fragments of the genome as well as particles that had partially completed the packaging process shows that there is no unique, deterministic DNA packaging pathway.

93 citations

Journal ArticleDOI
TL;DR: A widespread and important statistical measure known as the randomness parameter, which is the squared coefficient of variation of the cycle completion times, although it places significant limits on the minimal complexity of possible enzymatic mechanisms is focused on.
Abstract: Enzyme-catalyzed reactions are naturally stochastic, and precision measurements of these fluctuations, made possible by single-molecule methods, promise to provide fundamentally new constraints on the possible mechanisms underlying these reactions. We review some aspects of statistical kinetics: a new field with the goal of extracting mechanistic information from statistical measures of fluctuations in chemical reactions. We focus on a widespread and important statistical measure known as the randomness parameter. This parameter is remarkably simple in that it is the squared coefficient of variation of the cycle completion times, although it places significant limits on the minimal complexity of possible enzymatic mechanisms. Recently, a general expression has been introduced for the substrate dependence of the randomness parameter that is for rate fluctuations what the Michaelis–Menten expression is for the mean rate of product generation. We discuss the information provided by the new kinetic parameters introduced by this expression and demonstrate that this expression can simplify the vast majority of published models.

93 citations

Journal ArticleDOI
TL;DR: Experiments show that Network Enhancement (NE) improves gene–function prediction by denoising tissue-specific interaction networks, alleviates interpretation of noisy Hi-C contact maps from the human genome, and boosts fine-grained identification accuracy of species.
Abstract: Networks are ubiquitous in biology where they encode connectivity patterns at all scales of organization, from molecular to the biome. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper discovery of network patterns and dynamics. We propose Network Enhancement (NE), a method for improving the signal-to-noise ratio of undirected, weighted networks. NE uses a doubly stochastic matrix operator that induces sparsity and provides a closed-form solution that increases spectral eigengap of the input network. As a result, NE removes weak edges, enhances real connections, and leads to better downstream performance. Experiments show that NE improves gene–function prediction by denoising tissue-specific interaction networks, alleviates interpretation of noisy Hi-C contact maps from the human genome, and boosts fine-grained identification accuracy of species. Our results indicate that NE is widely applicable for denoising biological networks. Technical noise in experiments is unavoidable, but it introduces inaccuracies into the biological networks we infer from the data. Here, the authors introduce a diffusion-based method for denoising undirected, weighted networks, and show that it improves the performances of downstream analyses.

92 citations

Journal ArticleDOI
TL;DR: A formalism based on the master equation is adopted and it is shown how the probability density for the position of a molecular motor at a given time can be solved exactly in Fourier-Laplace space.
Abstract: Dynamic biological processes such as enzyme catalysis, molecular motor translocation, and protein and nucleic acid conformational dynamics are inherently stochastic processes. However, when such processes are studied on a nonsynchronized ensemble, the inherent fluctuations are lost, and only the average rate of the process can be measured. With the recent development of methods of single-molecule manipulation and detection, it is now possible to follow the progress of an individual molecule, measuring not just the average rate but the fluctuations in this rate as well. These fluctuations can provide a great deal of detail about the underlying kinetic cycle that governs the dynamical behavior of the system. However, extracting this information from experiments requires the ability to calculate the general properties of arbitrarily complex theoretical kinetic schemes. We present here a general technique that determines the exact analytical solution for the mean velocity and for measures of the fluctuations. We adopt a formalism based on the master equation and show how the probability density for the position of a molecular motor at a given time can be solved exactly in Fourier-Laplace space. With this analytic solution, we can then calculate the mean velocity and fluctuation-related parameters, such as the randomness parameter (a dimensionless ratio of the diffusion constant and the velocity) and the dwell time distributions, which fully characterize the fluctuations of the system, both commonly used kinetic parameters in single-molecule measurements. Furthermore, we show that this formalism allows calculation of these parameters for a much wider class of general kinetic models than demonstrated with previous methods.

92 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.

14,558 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations