scispace - formally typeset
Search or ask a question
Author

Carlos Bustamante

Bio: Carlos Bustamante is an academic researcher from Stanford University. The author has contributed to research in topics: Population & Optical tweezers. The author has an hindex of 161, co-authored 770 publications receiving 106053 citations. Previous affiliations of Carlos Bustamante include Lawrence Berkeley National Laboratory & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: A folding algorithm to predict the structure of an RNA from its sequence is suggested, but to solve the RNA folding problem one needs thermodynamic data on tertiary structure interactions, and identification and characterization of metal-ion binding sites.

910 citations

Journal ArticleDOI
TL;DR: During the past decade, physical techniques such as optical tweezers and atomic force microscopy were used to study the mechanical properties of DNA at the single-molecule level and knowledge of DNA's stretching and twisting properties now permits these single- molecule techniques to be used in the study of biological processes such as DNA replication and transcription.

839 citations

Journal ArticleDOI
Javier Prado-Martinez1, Peter H. Sudmant2, Jeffrey M. Kidd3, Jeffrey M. Kidd4, Heng Li5, Joanna L. Kelley4, Belen Lorente-Galdos1, Krishna R. Veeramah6, August E. Woerner6, Timothy D. O’Connor2, Gabriel Santpere1, Alex Cagan7, Christoph Theunert7, Ferran Casals1, Hafid Laayouni1, Kasper Munch8, Asger Hobolth8, Anders E. Halager8, Maika Malig2, Jessica Hernandez-Rodriguez1, Irene Hernando-Herraez1, Kay Prüfer7, Marc Pybus1, Laurel Johnstone6, Michael Lachmann7, Can Alkan9, Dorina Twigg3, Natalia Petit1, Carl Baker2, Fereydoun Hormozdiari2, Marcos Fernandez-Callejo1, Marc Dabad1, Michael L. Wilson10, Laurie S. Stevison11, Cristina Camprubí12, Tiago Carvalho1, Aurora Ruiz-Herrera12, Laura Vives2, Marta Melé1, Teresa Abello, Ivanela Kondova13, Ronald E. Bontrop13, Anne E. Pusey14, Felix Lankester15, John Kiyang, Richard A. Bergl, Elizabeth V. Lonsdorf16, Simon Myers17, Mario Ventura18, Pascal Gagneux19, David Comas1, Hans R. Siegismund20, Julie Blanc, Lidia Agueda-Calpena, Marta Gut, Lucinda Fulton21, Sarah A. Tishkoff22, James C. Mullikin23, Richard K. Wilson21, Ivo Gut, Mary Katherine Gonder24, Oliver A. Ryder, Beatrice H. Hahn22, Arcadi Navarro1, Arcadi Navarro25, Joshua M. Akey2, Jaume Bertranpetit1, David Reich5, Thomas Mailund8, Mikkel H. Schierup8, Christina Hvilsom20, Christina Hvilsom26, Aida M. Andrés7, Jeffrey D. Wall11, Carlos Bustamante4, Michael F. Hammer6, Evan E. Eichler27, Evan E. Eichler2, Tomas Marques-Bonet25, Tomas Marques-Bonet1 
25 Jul 2013-Nature
TL;DR: This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.
Abstract: Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.

807 citations

Journal ArticleDOI
TL;DR: In this paper, a light-scattering experimental approach is described for detecting such extended aggregates of chomophores in which the radiation used is within an absorption maximum, specifically in the porphyrin Soret absorption region.
Abstract: Under appropriate conditions of concentration and ionic strength, trans-bis(N-methylpyridinium-4-yl)-diphenylporphine and its copper(II) derivative produce very large, bisignate circular dichroism signals in the Soret region when bound to DNA. The processes leading to these signals are shown to be highly cooperative. A new light-scattering experimental approach is described for detecting such extended aggregates of chomophores in which the radiation used is within an absorption maximum, specifically in the porphyrin Soret absorption region. Results from such resonance light-scattering experiments confirm that extended porphyrin aggregates form on the DNA, which, in contrast, remains dispersed

802 citations

Journal ArticleDOI
20 Oct 2005-Nature
TL;DR: Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection, and finds strong evidence that natural selection has shaped the recent molecular evolution of the authors' species.
Abstract: Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection. The extent to which weak negative and positive darwinian selection have driven the molecular evolution of different species varies greatly, with some species, such as Drosophila melanogaster, showing strong evidence of pervasive positive selection, and others, such as the selfing weed Arabidopsis thaliana, showing an excess of deleterious variation within local populations. Here we contrast patterns of coding sequence polymorphism identified by direct sequencing of 39 humans for over 11,000 genes to divergence between humans and chimpanzees, and find strong evidence that natural selection has shaped the recent molecular evolution of our species. Our analysis discovered 304 (9.0%) out of 3,377 potentially informative loci showing evidence of rapid amino acid evolution. Furthermore, 813 (13.5%) out of 6,033 potentially informative loci show a paucity of amino acid differences between humans and chimpanzees, indicating weak negative selection and/or balancing selection operating on mutations at these loci. We find that the distribution of negatively and positively selected genes varies greatly among biological processes and molecular functions, and that some classes, such as transcription factors, show an excess of rapidly evolving genes, whereas others, such as cytoskeletal proteins, show an excess of genes with extensive amino acid polymorphism within humans and yet little amino acid divergence between humans and chimpanzees.

781 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.

14,558 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations