scispace - formally typeset
Search or ask a question
Author

Carlos del Pozo

Bio: Carlos del Pozo is an academic researcher from University of Valencia. The author has contributed to research in topics: Enantioselective synthesis & Michael reaction. The author has an hindex of 28, co-authored 128 publications receiving 4874 citations. Previous affiliations of Carlos del Pozo include University of Louisville & University of Oviedo.


Papers
More filters
Journal ArticleDOI
TL;DR: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ and Hong Liu.
Abstract: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ Alexander E. Sorochinsky, Santos Fustero,*,‡,§ Vadim A. Soloshonok,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andreś Estelleś, 46100 Burjassot, Valencia, Spain Laboratorio de Molećulas Orgańicas, Centro de Investigacioń Príncipe Felipe, C/ Eduardo Primo Yuf́era 3, 46012 Valencia, Spain Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine

3,368 citations

Journal ArticleDOI
TL;DR: The intramolecular aza-Michael reaction of carbamates bearing remote alpha,beta-unsaturated aldehydes under organocatalytic conditions took place with good yields and excellent ee's when Jørgensen catalyst IV was used in the process, giving rise to the enantioselective formation of several five- and six-membered heterocycles.

156 citations

Journal ArticleDOI
TL;DR: The organocatalytic intramolecular aza-Michael reaction gives access to enantiomerically enriched nitrogen-containing heterocycles in a very simple manner and is demonstrated by the implementation of numerous tandem processes, as well as the total synthesis of several natural products.
Abstract: The organocatalytic intramolecular aza-Michael reaction gives access to enantiomerically enriched nitrogen-containing heterocycles in a very simple manner. Enals, enones, conjugated esters and nitro olefins have been employed as Michael acceptors, while moderate nitrogen nucleophiles such as sulphonamides, carbamates and amides have been shown to be appropriate Michael donors in this type of reaction. Additionally, the process has been performed under both covalent and non-covalent catalysis, with diaryl prolinols, imidazolidinones, thioureas and chiral binol phosphoric acids being the most frequently used catalysts. The level of efficiency reached with this protocol is demonstrated by the implementation of numerous tandem processes, as well as the total synthesis of several natural products.

150 citations

Journal ArticleDOI
TL;DR: The interaction of gold salts with fluorinated building blocks has been revised and recent developments in gold-catalyzed nucleophilic fluorinations have been covered.
Abstract: Gold-catalyzed reactions have witnessed an exponential growth in the past decade. When the unique modes of activation exhibited by gold species meet species with either fluorinated building blocks or fluorinating reagents, new opportunities arise for the development of new methodologies in fluoroorganic chemistry. Indeed, gold and fluorine truly formed a very fruitful partnership, and different types of reactivity emerged from their combination. This review gives an overview of such endeavors. The special properties imparted by fluorine to organic molecules have been exploited in gold-catalyzed processes, allowing for the generation of unprecedented fluorinated chemical entities. Thus, the interaction of gold salts with fluorinated building blocks has been revised. In a second section, recent developments in gold-catalyzed nucleophilic fluorinations have been covered. The development of new gold catalysts that stabilize the Au–F bond as well as recent mechanistic studies in the field raised the interest o...

149 citations

Journal ArticleDOI
TL;DR: Hoveyda−Grubbs catalyst in combination with BF3·OEt2 efficiently promotes tandem cross metathesis intramolecular aza-Michael reaction between enones and unsaturated carbamates resulting in the creation of β-amino carbonyl units.
Abstract: Hoveyda−Grubbs catalyst in combination with BF3·OEt2 efficiently promotes tandem cross metathesis intramolecular aza-Michael reaction between enones and unsaturated carbamates resulting in the creation of β-amino carbonyl units. The use of microwave irradiation dramatically accelerates the process, enhancing the synthetic utility of this methodology for the preparation of these types of derivatives. When enantiomerically enriched α-branched amines were used as starting materials, the process was also very efficient, although with modest selectivity in the newly created stereocenter. The use of microwave irradiation led to an interesting effect, inverting the selectivity in the addition process.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: The effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography are provided, as well as new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds.
Abstract: The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, 18F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in po...

2,149 citations

Journal ArticleDOI
TL;DR: This Perspective highlights the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds.
Abstract: In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds.

1,808 citations

Journal ArticleDOI
TL;DR: Compounds Currently in Phase II−III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas is presented.
Abstract: Compounds Currently in Phase II−III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas Yu Zhou,† Jiang Wang,† Zhanni Gu,† Shuni Wang,† Wei Zhu,† Jose ́ Luis Aceña,*,‡,§ Vadim A. Soloshonok,*,‡,∥ Kunisuke Izawa,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastiań, Spain Department of Organic Chemistry, Autońoma University of Madrid, Cantoblanco, 28049 Madrid, Spain IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024

1,740 citations

Journal ArticleDOI
TL;DR: A comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018 is provided.
Abstract: C–H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C–H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C–H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C–H activation until summer 2018.

1,417 citations