scispace - formally typeset
Search or ask a question
Author

Carlos F. G. C. Geraldes

Bio: Carlos F. G. C. Geraldes is an academic researcher from University of Coimbra. The author has contributed to research in topics: Nuclear magnetic resonance spectroscopy & Lanthanide. The author has an hindex of 49, co-authored 342 publications receiving 8710 citations. Previous affiliations of Carlos F. G. C. Geraldes include University of Santiago de Compostela & Paris Diderot University.


Papers
More filters
Journal ArticleDOI
TL;DR: Classification includes composition, magnetic properties, biodistribution and imaging applications, which covers all types of MRI contrast agents including, among others, extracellular, blood pool, polymeric, particulate, responsive, oral, and organ specific.
Abstract: A comprehensive classification of contrast agents currently used or under development for magnetic resonance imaging (MRI) is presented. Agents based on small chelates, macromolecular systems, iron oxides and other nanosystems, as well as responsive, chemical exchange saturation transfer (CEST) and hyperpolarization agents are covered in order to discuss the various possibilities of using MRI as a molecular imaging technique. The classification includes composition, magnetic properties, biodistribution and imaging applications. Chemical compositions of various classes of MRI contrast agents are tabulated, and their magnetic status including diamagnetic, paramagnetic and superparamagnetic are outlined. Classification according to biodistribution covers all types of MRI contrast agents including, among others, extracellular, blood pool, polymeric, particulate, responsive, oral, and organ specific (hepatobiliary, RES, lymph nodes, bone marrow and brain). Various targeting strategies of molecular, macromolecular and particulate carriers are also illustrated.

506 citations

Journal ArticleDOI
TL;DR: A variable-temperature, -pressure, and -ionic strength (1)H NMR study of the DOTA complexes of different trivalent cations yielded data that are in contradiction with the hitherto used model of only two enantiomeric pairs of diastereoisomers that differ in the ligand conformations.
Abstract: A variable-temperature, -pressure, and -ionic strength (1)H NMR study of the DOTA complexes of different trivalent cations (Sc, Y, La, Ce --> Lu) (DOTA = 1,4,7,10-tetraaza-1,4,7,10-tetrakis(carboxymethyl)cyclododecane) yielded data that are in contradiction with the hitherto used model of only two enantiomeric pairs of diastereoisomers that differ in the ligand conformations. A two-isomer equilibrium cannot explain the newly observed apparent reversal of the isomer ratio at the end of the series. As both conformers may lose their inner sphere water molecule, a coordination equilibrium may be superimposed on this conformational equilibrium, as shown by large positive reaction volumes for the isomerization of [Ln(DOTA)(H(2)O)(x)()](-) (Ln = Yb, Lu; x = 1, 0). The isomerization of [Nd(DOTA)(H(2)O)](-) and [Eu(DOTA)(H(2)O)](-) is purely conformational, as shown by near-zero reaction volumes. The measured isomerization enthalpies and entropies agree with this model. The shift of the isomerization equilibria by a variety of non-coordinative salts depends on the ligand conformation rather than the presence or absence of the inner sphere water molecule. This results from weak ion binding and water solvent stabilization of one ligand conformation, rather than the decrease of the activity of the bulk water in the solution, as shown by UV-vis measurements of the coordination number sensitive transition (5)F(0) --> (7)D(0) of Eu(III) as a function of ionic strength. Fluoride ions replace a water molecule in the inner coordination sphere, preferentially for one of the conformational isomers, as proven by (19)F-NMR shifts and the appearance of a third set of resonances corresponding to [Eu(DOTA)F](2)(-) in the (1)H-NMR spectrum of [Eu(DOTA)(H(2)O)](-).

311 citations

Journal ArticleDOI
TL;DR: There is no striking correlation between the nature of the ligand systems and the insulin-mimetic potency in these cell culture tests, encompassing 41 vanadium compounds, the results on 22 of which are reported in detail here.
Abstract: A representative set of vanadium(IV and V) compounds in varying coordination environments has been tested in the concentration range 1 to 10–6 mM, using transformed mice fibroblasts (cell line SV 3T3), with respect to their short-term cell toxicity (up to 36 hours) and their ability to stimulate glucose uptake by cells. These insulin-mimetic tests have also been carried out with non-transformed human fibroblasts (cell line F26). The compounds under investigation comprise established insulin-mimetic species such as vanadate ([H2VO4]–), [VO(acetylacetonate)2], [VO2(dipicolinate)]– and [VO(maltolate)2], and new systems and coordination compounds containing OO, ON, OS, NS and ONS donor atom sets. A vitality test assay, measuring the reduction equivalents released in the mitochondrial respiratory chain by intracellular glucose degradation, is introduced and the results are counter-checked with 3H-labelled glucose. Most compounds are toxic at the 1 mM concentration level, and most compounds are essentially non-toxic and about as effective as or more potent than insulin at concentrations of 0.01 mM and below. VV compounds tend to be less toxic than VIV compounds, and complexes containing thio functional ligands are somewhat more toxic than others. Generally, ON ligation is superior in insulin-mimetic efficacy to OO or O/NS coordination, irrespective of the vanadium oxidation state. There is, however, no striking correlation between the nature of the ligand systems and the insulin-mimetic potency in these cell culture tests, encompassing 41 vanadium compounds, the results on 22 of which are reported in detail here. The syntheses and characteristics of various new compounds are provided together with selected speciation results. The crystal and molecular structures of {[VO(naph-tris)]2} [where naph-tris is the Schiff base formed between o-hydroxynaphthaldehyde and tris(hydroxymethyl)amine] are reported. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0311-5

226 citations

Journal ArticleDOI
26 Aug 2010-ACS Nano
TL;DR: It is shown, that the viability and the mitochondrial dehydrogenase expression of the microglial cells do not appear to be sensitive to the vesicular load with these core-shell nanoparticles.
Abstract: We report the fine-tuning of the relaxometry of gamma-Fe2O3@SiO2 core-shell nanoparticles by adjusting the thickness of the coated silica layer It is clear that the coating thickness of Fe2O3@SiO2 nanoparticles has a significant impact on the r(1) (at low B0 fields), r(2), and r(2)* relaxivities of their aqueous suspensions These studies clearly indicate that the silica layer is heterogeneous and has regions that are porous to water and others-that are not It is also shown, that the viability and the mitochondrial dehydrogenase expression of the microglial cells do not appear to be sensitive to the vesicular load with these core-shell nanoparticles The adequate silica-shell thickness can therefore be tuned to allow for both a sufficiently high response as contrast agent, and-adequate grafting of targeted biomolecules

134 citations

Journal ArticleDOI
TL;DR: The DFT calculations indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.
Abstract: The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated Crystals of [(V(V)O(2))(2)(pyren)(2)]2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems Very significant differences in the metal-binding abilities of the ligands were found Both 1 and 2 act as tetradentate ligands H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2) The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A. Relaxivity 2331 E. Outerand Second-Sphere relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336.
Abstract: A. Water Exchange 2326 B. Proton Exchange 2327 C. Electronic Relaxation 2327 D. Relaxivity 2331 E. Outerand Second-Sphere Relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336 A. Introduction 2336 B. General Conjugation Methods 2336 C. Synthetic Linear Polymers 2336 D. Synthetic Dendrimer-Based Agents 2338 E. Naturally Occurring Polymers (Proteins, Polysaccharides, and Nucleic Acids) 2339

4,125 citations

Journal ArticleDOI
TL;DR: Metal Organic Frameworks in Biomedicine Patricia Horcajada, Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre.
Abstract: Metal Organic Frameworks in Biomedicine Patricia Horcajada,* Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre* Institut Lavoisier, UMR CNRS 8180, Universit e de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France Facult e de Pharmacie, UMR CNRS 8612, Universit e Paris-Sud, 92296 Châtenay-Malabry Cedex, France Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universit e Montpellier 2, 34095 Montpellier cedex 05, France EaStChem School of Chemistry, University of St. Andrews Purdie Building, St Andrews, KY16 9ST U.K.

3,400 citations

Journal ArticleDOI
TL;DR: Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds, potentially leading to tissue damage or disease.
Abstract: Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.

2,197 citations

Journal ArticleDOI
TL;DR: The trivalent europium ion (Eu3+) is well known for its strong luminescence in the red spectral region, but this ion is also interesting from a theoretical point of view as mentioned in this paper.

1,906 citations