scispace - formally typeset
Search or ask a question
Author

Carlos G. Davila

Bio: Carlos G. Davila is an academic researcher from Langley Research Center. The author has contributed to research in topics: Delamination & Fracture mechanics. The author has an hindex of 35, co-authored 94 publications receiving 9324 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a methodology to determine the constitutive parameters for the simulation of progressive delamination is proposed, which accounts for the size of a cohesive finite element and the length of the cohesive zone to ensure the correct dissipation of energy.

1,314 citations

Journal ArticleDOI
TL;DR: In this paper, a new decohesion element with the capability of dealing with crack propagation under mixed-mode loading is proposed and demonstrated, which is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations in composite materials.
Abstract: A new decohesion element with the capability of dealing with crack propagation under mixed-mode loading is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations in composite materials. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law is applied in the three-parameter Benzeggagh-Kenane mode interaction criterion to predict mixed-mode delamination propagation. To demonstrate the accuracy of the predictions, steady-state delamination growth is simulated for quasi-static loading of various single mode and mixed-mode delamination test specimens and the results are compared with experimental data.

1,285 citations

01 Jun 2002
TL;DR: In this article, a decohesion element with mixed-mode capability is proposed and demonstrated at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations.
Abstract: A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.

909 citations

Journal ArticleDOI
TL;DR: In this paper, a thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio, and a constitutive equation is developed to model the initiation and propagation of delamination.

820 citations

Journal ArticleDOI
TL;DR: A continuum damage model for the prediction of the onset and evolution of intralaminar failure mechanisms and the collapse of structures manufactured in fiber-reinforced plastic laminates is proposed in this article.

686 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a methodology to determine the constitutive parameters for the simulation of progressive delamination is proposed, which accounts for the size of a cohesive finite element and the length of the cohesive zone to ensure the correct dissipation of energy.

1,314 citations

Journal ArticleDOI
TL;DR: In this paper, a new decohesion element with the capability of dealing with crack propagation under mixed-mode loading is proposed and demonstrated, which is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations in composite materials.
Abstract: A new decohesion element with the capability of dealing with crack propagation under mixed-mode loading is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations in composite materials. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law is applied in the three-parameter Benzeggagh-Kenane mode interaction criterion to predict mixed-mode delamination propagation. To demonstrate the accuracy of the predictions, steady-state delamination growth is simulated for quasi-static loading of various single mode and mixed-mode delamination test specimens and the results are compared with experimental data.

1,285 citations

01 Jun 2002
TL;DR: In this article, a decohesion element with mixed-mode capability is proposed and demonstrated at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations.
Abstract: A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.

909 citations

Journal ArticleDOI
TL;DR: In this paper, a thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio, and a constitutive equation is developed to model the initiation and propagation of delamination.

820 citations

Journal ArticleDOI
TL;DR: In this article, an anisotropic damage model suitable for predicting failure and post-failure behavior in fiber-reinforced materials is presented, which is intended to predict behavior of elastic-brittle materials that show no significant plastic deformation before failure.
Abstract: This paper presents an anisotropic damage model suitable for predicting failure and post-failure behavior in fiber-reinforced materials. In the model the plane stress formulation is used and the response of the undamaged material is assumed to be linearly elastic. The model is intended to predict behavior of elastic-brittle materials that show no significant plastic deformation before failure. Four different failure modes – fiber tension, fiber compression, matrix tension, and matrix compression – are considered and modeled separately. The onset of damage is predicted using Hashin’s initiation criteria [Hashin Z, Rotem A. A fatigue failure criterion for fiber-reinforced materials. J Compos Mater 1973;7:448; Hashin Z. Failure criteria for unidirectional fiber composites. J Appl Mech 1980;47:329–34] and the progression of damage is controlled by a new damage evolution law, which is easy to implement in a finite element code. The evolution law is based on fracture energy dissipation during the damage process and the increase in damage is controlled by equivalent displacements. The issues related to numerical implementation, such as mesh sensitivity and convergence in the softening regime, are also addressed.

769 citations