scispace - formally typeset
Search or ask a question
Author

Carlos Milovic

Other affiliations: University College London
Bio: Carlos Milovic is an academic researcher from Pontifical Catholic University of Chile. The author has contributed to research in topics: Quantitative susceptibility mapping & Imaging phantom. The author has an hindex of 9, co-authored 21 publications receiving 328 citations. Previous affiliations of Carlos Milovic include University College London.

Papers
More filters
Journal ArticleDOI
TL;DR: The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully.
Abstract: Purpose The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. Methods Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and the error in selected white and gray matter regions. Results Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. Conclusion Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

152 citations

Journal ArticleDOI
TL;DR: A novel algorithm is presented that solves the nonlinear functional while achieving computation speeds comparable to those for a linear formulation.
Abstract: Purpose Quantitative susceptibility mapping can be performed through the minimization of a function consisting of data fidelity and regularization terms. For data consistency, a Gaussian-phase noise distribution is often assumed, which breaks down when the signal-to-noise ratio is low. A previously proposed alternative is to use a nonlinear data fidelity term, which reduces streaking artifacts, mitigates noise amplification, and results in more accurate susceptibility estimates. We hereby present a novel algorithm that solves the nonlinear functional while achieving computation speeds comparable to those for a linear formulation. Methods We developed a nonlinear quantitative susceptibility mapping algorithm (fast nonlinear susceptibility inversion) based on the variable splitting and alternating direction method of multipliers, in which the problem is split into simpler subproblems with closed-form solutions and a decoupled nonlinear inversion hereby solved with a Newton-Raphson iterative procedure. Fast nonlinear susceptibility inversion performance was assessed using numerical phantom and in vivo experiments, and was compared against the nonlinear morphology-enabled dipole inversion method. Results Fast nonlinear susceptibility inversion achieves similar accuracy to nonlinear morphology-enabled dipole inversion but with significantly improved computational efficiency. Conclusion The proposed method enables accurate reconstructions in a fraction of the time required by state-of-the-art quantitative susceptibility mapping methods. Magn Reson Med 80:814-821, 2018. © 2018 International Society for Magnetic Resonance in Medicine.

59 citations

Journal ArticleDOI
TL;DR: A new Bayesian QSM algorithm, named Multi‐Scale Dipole Inversion (MSDI), is presented, which builds on the nonlinear Morphology‐Enabled Dipole inversion (nMEDI) framework, incorporating three additional features: improved implementation of Laplace's equation to reduce the influence of background fields through variable harmonic filtering and subsequent deconvolution, improved error control through dynamic phase‐reliability compensation across spatial scales, and scalewise use of the morphological prior.

53 citations

Journal ArticleDOI
TL;DR: This work synergistically combine this physics‐model with a Variational Network to leverage the power of deep learning in the VaNDI algorithm and adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning.
Abstract: High-quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre-determined regularization while matching the image quality of state-of-the-art reconstruction techniques and avoiding over-smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1-direction data. This is made possible by a nonlinear forward-model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics-model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave-CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high-quality QSM from as few as 2-direction data.

46 citations

Journal ArticleDOI
TL;DR: In this paper, a digital whole-head tissue property phantom was created by segmenting and post-processing high-resolution (0.64 mm isotropic) multiparametric MRI data acquired at 7 T from a healthy volunteer.
Abstract: Purpose To create a realistic in silico head phantom for the second QSM reconstruction challenge and for future evaluations of processing algorithms for QSM. Methods We created a digital whole-head tissue property phantom by segmenting and postprocessing high-resolution (0.64 mm isotropic), multiparametric MRI data acquired at 7 T from a healthy volunteer. We simulated the steady-state magnetization at 7 T using a Bloch simulator and mimicked a Cartesian sampling scheme through Fourier-based processing. Computer code for generating the phantom and performing the MR simulation was designed to facilitate flexible modifications of the phantom in the future, such as the inclusion of pathologies as well as the simulation of a wide range of acquisition protocols. Specifically, the following parameters and effects were implemented: TR and TE, voxel size, background fields, and RF phase biases. Diffusion-weighted imaging phantom data are provided, allowing future investigations of tissue-microstructure effects in phase and QSM algorithms. Results The brain part of the phantom featured realistic morphology with spatial variations in relaxation and susceptibility values similar to the in vivo setting. We demonstrated some of the phantom's properties, including the possibility of generating phase data with nonlinear evolution over TE due to partial-volume effects or complex distributions of frequency shifts within the voxel. Conclusion The presented phantom and computer programs are publicly available and may serve as a ground truth in future assessments of the faithfulness of quantitative susceptibility reconstruction algorithms.

27 citations


Cited by
More filters
01 Jan 2016
TL;DR: This book helps people to enjoy a good book with a cup of coffee in the afternoon, instead they juggled with some malicious bugs inside their laptop.
Abstract: Thank you for downloading magnetic resonance imaging physical principles and sequence design. As you may know, people have look numerous times for their chosen books like this magnetic resonance imaging physical principles and sequence design, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some malicious bugs inside their laptop.

695 citations

Journal ArticleDOI
TL;DR: A new total-generalized-variation (TGV) based method for QSM reconstruction, which incorporates individual steps of phase unwrapping, background field removal and dipole inversion in a single iteration, thus yielding a robust solution to the reconstruction problem is proposed.

160 citations

Journal ArticleDOI
TL;DR: The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully.
Abstract: Purpose The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. Methods Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and the error in selected white and gray matter regions. Results Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. Conclusion Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

152 citations

Journal ArticleDOI
TL;DR: The hMRI-toolbox is introduced, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps.

151 citations

Journal ArticleDOI
TL;DR: An MRI reconstruction algorithm, which is referred to as quantitative susceptibility mapping (QSM), has been developed using a deep neural network in order to perform dipole deconvolution, which restores magnetic susceptibility source from an MRI field map.

147 citations