scispace - formally typeset
Search or ask a question
Author

Carlos Scheidegger

Other affiliations: University of South Florida, University of Utah, AT&T Labs  ...read more
Bio: Carlos Scheidegger is an academic researcher from University of Arizona. The author has contributed to research in topics: Visualization & Data visualization. The author has an hindex of 37, co-authored 118 publications receiving 6800 citations. Previous affiliations of Carlos Scheidegger include University of South Florida & University of Utah.


Papers
More filters
Proceedings ArticleDOI
10 Aug 2015
TL;DR: This work links disparate impact to a measure of classification accuracy that while known, has received relatively little attention and proposes a test for disparate impact based on how well the protected class can be predicted from the other attributes.
Abstract: What does it mean for an algorithm to be biased? In U.S. law, unintentional bias is encoded via disparate impact, which occurs when a selection process has widely different outcomes for different groups, even as it appears to be neutral. This legal determination hinges on a definition of a protected class (ethnicity, gender) and an explicit description of the process.When computers are involved, determining disparate impact (and hence bias) is harder. It might not be possible to disclose the process. In addition, even if the process is open, it might be hard to elucidate in a legal setting how the algorithm makes its decisions. Instead of requiring access to the process, we propose making inferences based on the data it uses.We present four contributions. First, we link disparate impact to a measure of classification accuracy that while known, has received relatively little attention. Second, we propose a test for disparate impact based on how well the protected class can be predicted from the other attributes. Third, we describe methods by which data might be made unbiased. Finally, we present empirical evidence supporting the effectiveness of our test for disparate impact and our approach for both masking bias and preserving relevant information in the data. Interestingly, our approach resembles some actual selection practices that have recently received legal scrutiny.

1,434 citations

Posted Content
TL;DR: In this paper, the authors propose a test for disparate impact based on analyzing the information leakage of the protected class from the other data attributes, and present empirical evidence supporting the effectiveness of their test and their approach for masking bias and preserving relevant information in the data.
Abstract: What does it mean for an algorithm to be biased? In U.S. law, unintentional bias is encoded via disparate impact, which occurs when a selection process has widely different outcomes for different groups, even as it appears to be neutral. This legal determination hinges on a definition of a protected class (ethnicity, gender, religious practice) and an explicit description of the process. When the process is implemented using computers, determining disparate impact (and hence bias) is harder. It might not be possible to disclose the process. In addition, even if the process is open, it might be hard to elucidate in a legal setting how the algorithm makes its decisions. Instead of requiring access to the algorithm, we propose making inferences based on the data the algorithm uses. We make four contributions to this problem. First, we link the legal notion of disparate impact to a measure of classification accuracy that while known, has received relatively little attention. Second, we propose a test for disparate impact based on analyzing the information leakage of the protected class from the other data attributes. Third, we describe methods by which data might be made unbiased. Finally, we present empirical evidence supporting the effectiveness of our test for disparate impact and our approach for both masking bias and preserving relevant information in the data. Interestingly, our approach resembles some actual selection practices that have recently received legal scrutiny.

679 citations

Proceedings ArticleDOI
27 Jun 2006
TL;DR: The VisTrails system represents the initial attempt to improve the scientific discovery process and reduce the time to insight, and is presented by presenting actual scenarios in which scientific visualization is used and showing how the system improves usability, enables reproducibility, and greatly reduces the time required to create scientific visualizations.
Abstract: Scientists are now faced with an incredible volume of data to analyze. To successfully analyze and validate various hypothesis, it is necessary to pose several queries, correlate disparate data, and create insightful visualizations of both the simulated processes and observed phenomena. Often, insight comes from comparing the results of multiple visualizations. Unfortunately, today this process is far from interactive and contains many error-prone and time-consuming tasks. As a result, the generation and maintenance of visualizations is a major bottleneck in the scientific process, hindering both the ability to mine scientific data and the actual use of the data. The VisTrails system represents our initial attempt to improve the scientific discovery process and reduce the time to insight. In VisTrails, we address the problem of visualization from a data management perspective: VisTrails manages the data and metadata of a visualization product. In this demonstration, we show the power and flexibility of our system by presenting actual scenarios in which scientific visualization is used and showing how our system improves usability, enables reproducibility, and greatly reduces the time required to create scientific visualizations.

541 citations

Proceedings ArticleDOI
29 Jan 2019
TL;DR: It is found that fairness-preserving algorithms tend to be sensitive to fluctuations in dataset composition and to different forms of preprocessing, indicating that fairness interventions might be more brittle than previously thought.
Abstract: Computers are increasingly used to make decisions that have significant impact on people's lives. Often, these predictions can affect different population subgroups disproportionately. As a result, the issue of fairness has received much recent interest, and a number of fairness-enhanced classifiers have appeared in the literature. This paper seeks to study the following questions: how do these different techniques fundamentally compare to one another, and what accounts for the differences? Specifically, we seek to bring attention to many under-appreciated aspects of such fairness-enhancing interventions that require investigation for these algorithms to receive broad adoption. We present the results of an open benchmark we have developed that lets us compare a number of different algorithms under a variety of fairness measures and existing datasets. We find that although different algorithms tend to prefer specific formulations of fairness preservations, many of these measures strongly correlate with one another. In addition, we find that fairness-preserving algorithms tend to be sensitive to fluctuations in dataset composition (simulated in our benchmark by varying training-test splits) and to different forms of preprocessing, indicating that fairness interventions might be more brittle than previously thought.

476 citations

Posted Content
TL;DR: In this article, the authors show that in order to prove desirable properties of the entire decision-making process, different mechanisms for fairness require different assumptions about the nature of the mapping from construct space to decision space.
Abstract: What does it mean for an algorithm to be fair? Different papers use different notions of algorithmic fairness, and although these appear internally consistent, they also seem mutually incompatible. We present a mathematical setting in which the distinctions in previous papers can be made formal. In addition to characterizing the spaces of inputs (the "observed" space) and outputs (the "decision" space), we introduce the notion of a construct space: a space that captures unobservable, but meaningful variables for the prediction. We show that in order to prove desirable properties of the entire decision-making process, different mechanisms for fairness require different assumptions about the nature of the mapping from construct space to decision space. The results in this paper imply that future treatments of algorithmic fairness should more explicitly state assumptions about the relationship between constructs and observations.

388 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box decision support systems, given a problem definition, a black box type, and a desired explanation, this survey should help the researcher to find the proposals more useful for his own work.
Abstract: In recent years, many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness, sometimes at the cost of sacrificing accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, it explicitly or implicitly delineates its own definition of interpretability and explanation. The aim of this article is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation, this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.

2,805 citations

Proceedings Article
05 Dec 2016
TL;DR: This work proposes a criterion for discrimination against a specified sensitive attribute in supervised learning, where the goal is to predict some target based on available features and shows how to optimally adjust any learned predictor so as to remove discrimination according to this definition.
Abstract: We propose a criterion for discrimination against a specified sensitive attribute in supervised learning, where the goal is to predict some target based on available features. Assuming data about the predictor, target, and membership in the protected group are available, we show how to optimally adjust any learned predictor so as to remove discrimination according to our definition. Our framework also improves incentives by shifting the cost of poor classification from disadvantaged groups to the decision maker, who can respond by improving the classification accuracy. We enourage readers to consult the more complete manuscript on the arXiv.

2,690 citations

Journal ArticleDOI
14 Apr 2017-Science
TL;DR: This article showed that applying machine learning to ordinary human language results in human-like semantic biases and replicated a spectrum of known biases, as measured by the Implicit Association Test, using a widely used, purely statistical machine-learning model trained on a standard corpus of text from the World Wide Web.
Abstract: Machine learning is a means to derive artificial intelligence by discovering patterns in existing data. Here, we show that applying machine learning to ordinary human language results in human-like semantic biases. We replicated a spectrum of known biases, as measured by the Implicit Association Test, using a widely used, purely statistical machine-learning model trained on a standard corpus of text from the World Wide Web. Our results indicate that text corpora contain recoverable and accurate imprints of our historic biases, whether morally neutral as toward insects or flowers, problematic as toward race or gender, or even simply veridical, reflecting the status quo distribution of gender with respect to careers or first names. Our methods hold promise for identifying and addressing sources of bias in culture, including technology.

1,874 citations