scispace - formally typeset
Search or ask a question
Author

Carlotta Rossi

Bio: Carlotta Rossi is an academic researcher from Mario Negri Institute for Pharmacological Research. The author has contributed to research in topics: Intensive care & Intensive care unit. The author has an hindex of 18, co-authored 35 publications receiving 1220 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Delays in diagnosis is an important issue for patients with Takayasu's arteritis, and the increasing occurrence of vascular lesions along with the disease progression put to question the long-term effectiveness of contemporary treatment.
Abstract: Objective Takayasu's arteritis (TA) is a rare vasculitis. The Italian Takayasu's Arteritis study group was established with the aim to describe a large cohort of patients. Methods Data were collected by means of an ad hoc form. Demographic information, clinical history, vascular findings, treatment, risk factors, and comorbidities were analyzed. Results Data of 104 patients were collected. The median delay in diagnosis was 15.5 months (range 0–325 months). Age at onset <15 years was associated with a higher probability, whereas elevated erythrocyte sedimentation rate with a lower probability, of a delay in diagnosis. The majority of patients experienced nonspecific signs and symptoms indicative of an inflammatory disease in the early phase. Among vascular involvement, stenosis was the most frequent lesion, being present in 93% of patients, followed by occlusion (57%), dilatation (16%), and aneurysm (7%). Glucocorticoids were the mainstay of treatment in our series; however, treatment with cytotoxic agents was required in about half of the patients. Fifty-two patients underwent at least 1 surgical procedure. The main indications for intervention were renal vascular hypertension, cerebral hypoperfusion, and limb claudication. Conclusion As with many rare diseases, delay in diagnosis is an important issue for patients with TA. The increasing occurrence of vascular lesions along with the disease progression put to question the long-term effectiveness of contemporary treatment. These data may be helpful in increasing physicians' awareness to prevent diagnosis delay, update guidelines, and plan future research projects.

277 citations

Journal ArticleDOI
TL;DR: In patients with hematologic malignancies, acute respiratory failure should probably be managed initially with noninvasive mechanical ventilation, and immediate invasive mechanical ventilation might offer some benefits for those with acute lung injury/adult respiratory distress syndrome.
Abstract: Background:Mortality is high among patients with hematologic malignancies admitted to intensive care units for acute respiratory failure. Early noninvasive mechanical ventilation seems to improve outcomes.Objective:To characterize noninvasive mechanical ventilation use in Italian intensive care unit

167 citations

Journal ArticleDOI
TL;DR: The findings suggest that ICUs with less than about 12 beds are not cost-effective, and ICU characteristics that predict labour costs per patient are identified.
Abstract: We examined the relationship between major ICU characteristics and labour cost per patient. Four-week prospective data collection, in which the hours spent by each physician and nurse on both in-ICU and extra-ICU activities were collected. Eighty Italian adult ICUs. The cost of the time actually spent by ICU staff on ICU patients (labour cost) was computed for each participating unit, by applying to the average annual salaries the proportions of in-ICU activity working time for physicians and nurses. Multiple regression analysis was used to identify ICU characteristics that predict labour costs per patient. Labour cost per patient was positively correlated with ICU mortality and patients average length of stay (slopes =0.67, p =0.048 and 0.09, p <0.0001, respectively). Labour cost per patient decreases almost linearly as the number of beds increases up to about eight, and it remains nearly constant above about twelve beds. The number of patients admitted per physician (not per nurse) increases with the number of beds (Spearman correlation coefficient =0.567, p <0.0001). Our findings suggest that ICUs with less than about 12 beds are not cost-effective.

115 citations

Journal ArticleDOI
01 Jan 2014-BMJ Open
TL;DR: CPFA did not reduce mortality in patients with septic shock, nor did it positively affect other important clinical outcomes, but a subgroup analysis suggested that CPFA could reduce mortality, when a high volume of plasma is treated.
Abstract: Objectives Coupled plasma filtration adsorption (CPFA, Bellco, Italy), to remove inflammatory mediators from blood, has been proposed as a novel treatment for septic shock. This multicenter, randomised, non-blinded trial compared CPFA with standard care in the treatment of critically ill patients with septic shock. Design Prospective, multicenter, randomised, open-label, two parallel group and superiority clinical trial. Setting 18 Italian adult, general, intensive care units (ICUs). Participants Of the planned 330 adult patients with septic shock, 192 were randomised to either have CPFA added to the standard care, or not. The external monitoring committee excluded eight ineligible patients who were erroneously included. Interventions CPFA was to be performed daily for 5 days, lasting at least 10 h/day. Primary and secondary outcome measures The primary endpoint was mortality at discharge from the hospital at which the patient last stayed. Secondary endpoints were: 90-day mortality, new organ failures and ICU-free days within 30 days. Results There was no statistical difference in hospital mortality (47.3% controls, 45.1% CPFA; p=0.76), nor in secondary endpoints, namely the occurrence of new organ failures (55.9% vs 56.0%; p=0.99) or free-ICU days during the first 30 days (6.8 vs 7.5; p=0.35). The study was terminated on the grounds of futility. Several patients randomised to CPFA were subsequently found to be undertreated. An a priori planned subgroup analysis showed those receiving a CPFA dose >0.18 L/kg/day had a lower mortality compared with controls (OR 0.36, 95% CI 0.13 to 0.99). Conclusions CPFA did not reduce mortality in patients with septic shock, nor did it positively affect other important clinical outcomes. A subgroup analysis suggested that CPFA could reduce mortality, when a high volume of plasma is treated. Owing to the inherent potential biases of such a subgroup analysis, this result can only be viewed as a hypothesis generator and should be confirmed in future studies. ClinicalTrials.gov NCT00332371; ISRCTN24534559.

113 citations

Journal ArticleDOI
TL;DR: Results question the way in which the drug is used in everyday clinical practice and its efficacy in a selected subgroup, and reinforce the need for a new, independent, confirmatory trial to reassess the risk-to-benefit ratio of DrotAA.
Abstract: Objective To monitor the use of drotrecogin alfa activated (DrotAA) in Italy and its effects on patients' health

81 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.
Abstract: To provide an update to “Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012”. A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

4,303 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an update to the original Surviving Sepsis Campaign clinical management guidelines for management of severe sepsis and septic shock, published in 2004.
Abstract: Objective To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004.

3,928 citations

01 Jan 2008
TL;DR: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, the GRADE system was used to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations.
Abstract: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004. Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation [1] indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations [2] indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7–10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure ≥ 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7–9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.

3,824 citations