scispace - formally typeset
Search or ask a question
Author

Carly Waterman

Bio: Carly Waterman is an academic researcher from Zoological Society of London. The author has contributed to research in topics: Pangolin & Biodiversity. The author has an hindex of 9, co-authored 15 publications receiving 1122 citations.

Papers
More filters
Journal ArticleDOI
14 Mar 2007-PLOS ONE
TL;DR: A simple index is defined that measures the contribution made by different species to phylogenetic diversity and how the index might contribute towards species-based conservation priorities and suggests that global conservation priorities may have to be reassessed in order to prevent a disproportionately large amount of mammalian evolutionary history becoming extinct in the near future.
Abstract: Conservation priority setting based on phylogenetic diversity has frequently been proposed but rarely implemented. Here, we define a simple index that measures the contribution made by different species to phylogenetic diversity and show how the index might contribute towards species-based conservation priorities. We describe procedures to control for missing species, incomplete phylogenetic resolution and uncertainty in node ages that make it possible to apply the method in poorly known clades. We also show that the index is independent of clade size in phylogenies of more than 100 species, indicating that scores from unrelated taxonomic groups are likely to be comparable. Similar scores are returned under two different species concepts, suggesting that the index is robust to taxonomic changes. The approach is applied to a near-complete species-level phylogeny of the Mammalia to generate a global priority list incorporating both phylogenetic diversity and extinction risk. The 100 highest-ranking species represent a high proportion of total mammalian diversity and include many species not usually recognised as conservation priorities. Many species that are both evolutionarily distinct and globally endangered (EDGE species) do not benefit from existing conservation projects or protected areas. The results suggest that global conservation priorities may have to be reassessed in order to prevent a disproportionately large amount of mammalian evolutionary history becoming extinct in the near future.

829 citations

Journal ArticleDOI
TL;DR: This work evaluates how a composite measure of extinction risk and phylogenetic isolation (EDGE) has been used to prioritize species according to their degree of unique evolutionary history (evolutionary distinctiveness, ED) weighted by conservation urgency (global endangerment, GE).
Abstract: Under the impact of human activity, global extinction rates have risen a thousand times higher than shown in the fossil record. The resources available for conservation are insufficient to prevent the loss of much of the world's threatened biodiversity during this crisis. Conservation planners have been forced to prioritize their protective activities, in the context of great uncertainty. This has become known as ‘the agony of choice’. A range of methods have been proposed for prioritizing species for conservation attention; one of the most strongly supported is prioritizing those species that maximize phylogenetic distinctiveness (PD). We evaluate how a composite measure of extinction risk and phylogenetic isolation (EDGE) has been used to prioritize species according to their degree of unique evolutionary history (evolutionary distinctiveness, ED) weighted by conservation urgency (global endangerment, GE). We review PD-based approaches and provide an updated list of EDGE mammals using the 2010 IUCN Red List. We evaluate how robust this method is to changes in phylogenetic uncertainty, knowledge of taxonomy and extinction risk, and examine how mammalian species that rank highly in EDGE score are representative of the collective from which they are drawn.

133 citations

Journal ArticleDOI
TL;DR: In this article, the authors used linear regression with multimodel inference to analyse data on online behavior from the websites of the World Wildlife Fund-US (WWF-US) and the Zoological Society of London's EDGE of Existence programme (EDGE), in order to understand how species traits and marketing campaign characteristics influenced flagship-based fundraising efforts.

115 citations

Journal ArticleDOI
TL;DR: In this article, the authors review current knowledge on best practice in capacity building for biodiversity monitoring and provide an overview of existing means to improve biodiversity data collection considering the different types of biodiversity monitoring data.
Abstract: Human-driven global change is causing ongoing declines in biodiversity worldwide. In order to address these declines, decision-makers need accurate assessments of the status of and pressures on biodiversity. However, these are heavily constrained by incomplete and uneven spatial, temporal and taxonomic coverage. For instance, data from regions such as Europe and North America are currently used overwhelmingly for large-scale biodiversity assessments due to lesser availability of suitable data from other, more biodiversity-rich, regions. These data-poor regions are often those experiencing the strongest threats to biodiversity, however. There is therefore an urgent need to fill the existing gaps in global biodiversity monitoring. Here, we review current knowledge on best practice in capacity building for biodiversity monitoring and provide an overview of existing means to improve biodiversity data collection considering the different types of biodiversity monitoring data. Our review comprises insights from work in Africa, South America, Polar Regions and Europe; in government-funded, volunteer and citizen-based monitoring in terrestrial, freshwater and marine ecosystems. The key steps to effectively building capacity in biodiversity monitoring are: identifying monitoring questions and aims; identifying the key components, functions, and processes to monitor; identifying the most suitable monitoring methods for these elements, carrying out monitoring activities; managing the resultant data; and interpreting monitoring data. Additionally, biodiversity monitoring should use multiple approaches including extensive and intensive monitoring through volunteers and professional scientists but also harnessing new technologies. Finally, we call on the scientific community to share biodiversity monitoring data, knowledge and tools to ensure the accessibility, interoperability, and reporting of biodiversity data at a global scale.

74 citations

Book
01 Jan 2014
TL;DR: This conservation action plan represents those considered critical by the IUCN SSC Pangolin Specialist Group, and which urgently require implementation.
Abstract: Pangolins, or scaly anteaters, are unique in being the world's only truly scaly mammals, but are in dire need of urgent conservation action. Pangolins have been subject to very little conservation or natural history research, and consequently, little is known about their biology, ecology, and conservation needs. It was in response to this predicament that the IUCN SSC Pangolin Specialist Group was re-formed in 2012. Its first conference was held in Singapore in June 2013, and it is from this meeting that this conservation action plan was borne. The actions represent those considered critical by the IUCN SSC Pangolin Specialist Group, and which urgently require implementation.

63 citations


Cited by
More filters
Journal Article
TL;DR: Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of the authors' brain’s wiring.
Abstract: In 1974 an article appeared in Science magazine with the dry-sounding title “Judgment Under Uncertainty: Heuristics and Biases” by a pair of psychologists who were not well known outside their discipline of decision theory. In it Amos Tversky and Daniel Kahneman introduced the world to Prospect Theory, which mapped out how humans actually behave when faced with decisions about gains and losses, in contrast to how economists assumed that people behave. Prospect Theory turned Economics on its head by demonstrating through a series of ingenious experiments that people are much more concerned with losses than they are with gains, and that framing a choice from one perspective or the other will result in decisions that are exactly the opposite of each other, even if the outcomes are monetarily the same. Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of our brain’s wiring.

4,351 citations

Journal ArticleDOI
03 Mar 2011-Nature
TL;DR: Differences between fossil and modern data and the addition of recently available palaeontological information influence understanding of the current extinction crisis, and results confirm that current extinction rates are higher than would be expected from the fossil record.
Abstract: Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.

3,051 citations

Journal ArticleDOI
TL;DR: The population extinction pulse shows, from a quantitative viewpoint, that Earth’s sixth mass extinction is more severe than perceived when looking exclusively at species extinctions and humanity needs to address anthropogenic population extirpation and decimation immediately.
Abstract: The population extinction pulse we describe here shows, from a quantitative viewpoint, that Earth’s sixth mass extinction is more severe than perceived when looking exclusively at species extinctions. Therefore, humanity needs to address anthropogenic population extirpation and decimation immediately. That conclusion is based on analyses of the numbers and degrees of range contraction (indicative of population shrinkage and/or population extinctions according to the International Union for Conservation of Nature) using a sample of 27,600 vertebrate species, and on a more detailed analysis documenting the population extinctions between 1900 and 2015 in 177 mammal species. We find that the rate of population loss in terrestrial vertebrates is extremely high—even in “species of low concern.” In our sample, comprising nearly half of known vertebrate species, 32% (8,851/27,600) are decreasing; that is, they have decreased in population size and range. In the 177 mammals for which we have detailed data, all have lost 30% or more of their geographic ranges and more than 40% of the species have experienced severe population declines (>80% range shrinkage). Our data indicate that beyond global species extinctions Earth is experiencing a huge episode of population declines and extirpations, which will have negative cascading consequences on ecosystem functioning and services vital to sustaining civilization. We describe this as a “biological annihilation” to highlight the current magnitude of Earth’s ongoing sixth major extinction event.

1,580 citations

Journal ArticleDOI
Jan Schipper1, Jan Schipper2, Janice Chanson1, Janice Chanson2, Federica Chiozza3, Neil A. Cox2, Neil A. Cox1, Michael R. Hoffmann1, Michael R. Hoffmann2, Vineet Katariya2, John F. Lamoreux2, John F. Lamoreux4, Ana S. L. Rodrigues5, Ana S. L. Rodrigues6, Simon N. Stuart1, Simon N. Stuart2, Helen J. Temple2, Jonathan E. M. Baillie7, Luigi Boitani3, Thomas E. Lacher1, Thomas E. Lacher4, Russell A. Mittermeier, Andrew T. Smith8, Daniel Absolon, John M. Aguiar1, John M. Aguiar4, Giovanni Amori, Noura Bakkour1, Noura Bakkour9, Ricardo Baldi10, Ricardo Baldi11, Richard J. Berridge, Jon Bielby7, Jon Bielby12, Patricia Ann Black13, Julian Blanc, Thomas M. Brooks14, Thomas M. Brooks15, Thomas M. Brooks1, James Burton16, James Burton17, Thomas M. Butynski18, Gianluca Catullo, Roselle Chapman, Zoe Cokeliss7, Ben Collen7, Jim Conroy, Justin Cooke, Gustavo A. B. da Fonseca19, Gustavo A. B. da Fonseca20, Andrew E. Derocher21, Holly T. Dublin, J. W. Duckworth10, Louise H. Emmons22, Richard H. Emslie2, Marco Festa-Bianchet23, Matthew N. Foster, Sabrina Foster24, David L. Garshelis25, C. Cormack Gates26, Mariano Gimenez-Dixon, Susana González, José F. González-Maya, Tatjana C. Good27, Geoffrey Hammerson28, Philip S. Hammond29, D. C. D. Happold30, Meredith Happold30, John Hare, Richard B. Harris31, Clare E. Hawkins14, Clare E. Hawkins32, Mandy Haywood33, Lawrence R. Heaney34, Simon Hedges10, Kristofer M. Helgen22, Craig Hilton-Taylor2, Syed Ainul Hussain35, Nobuo Ishii36, Thomas Jefferson37, Richard K. B. Jenkins38, Charlotte H. Johnston8, Mark Keith39, Jonathan Kingdon40, David Knox1, Kit M. Kovacs41, Kit M. Kovacs42, Penny F. Langhammer8, Kristin Leus43, Rebecca L. Lewison44, Gabriela Lichtenstein, Lloyd F. Lowry45, Zoe Macavoy12, Georgina M. Mace12, David Mallon46, Monica Masi, Meghan W. McKnight, Rodrigo A. Medellín47, Patricia Medici48, G. Mills, Patricia D. Moehlman, Sanjay Molur, Arturo Mora2, Kristin Nowell, John F. Oates49, Wanda Olech, William R.L. Oliver, Monik Oprea22, Bruce D. Patterson34, William F. Perrin37, Beth Polidoro2, Caroline M. Pollock2, Abigail Powel50, Yelizaveta Protas9, Paul A. Racey38, Jim Ragle2, Pavithra Ramani24, Galen B. Rathbun51, Randall R. Reeves, Stephen B. Reilly37, John E. Reynolds52, Carlo Rondinini3, Ruth Grace Rosell-Ambal1, Monica Rulli, Anthony B. Rylands, Simona Savini, Cody J. Schank24, Wes Sechrest24, Caryn Self-Sullivan, Alan Shoemaker2, Claudio Sillero-Zubiri40, Naamal De Silva, David E. Smith24, Chelmala Srinivasulu53, P. J. Stephenson, Nico van Strien54, Bibhab Kumar Talukdar55, Barbara L. Taylor37, Rob Timmins, Diego G. Tirira, Marcelo F. Tognelli56, Marcelo F. Tognelli11, Katerina Tsytsulina, Liza M. Veiga57, Jean-Christophe Vié2, Elizabeth A. Williamson58, Sarah A. Wyatt, Yan Xie, Bruce E. Young28 
Conservation International1, International Union for Conservation of Nature and Natural Resources2, Sapienza University of Rome3, Texas A&M University4, University of Cambridge5, Instituto Superior Técnico6, Zoological Society of London7, Arizona State University8, Columbia University9, Wildlife Conservation Society10, National Scientific and Technical Research Council11, Imperial College London12, National University of Tucumán13, University of Tasmania14, University of the Philippines Los Baños15, Earthwatch Institute16, University of Edinburgh17, Drexel University18, Global Environment Facility19, Universidade Federal de Minas Gerais20, University of Alberta21, Smithsonian Institution22, Université de Sherbrooke23, University of Virginia24, Minnesota Department of Natural Resources25, University of Calgary26, James Cook University27, NatureServe28, University of St Andrews29, Australian National University30, University of Montana31, General Post Office32, University of Otago33, Field Museum of Natural History34, Wildlife Institute of India35, Tokyo Woman's Christian University36, National Oceanic and Atmospheric Administration37, University of Aberdeen38, University of the Witwatersrand39, University of Oxford40, Norwegian Polar Institute41, University Centre in Svalbard42, Copenhagen Zoo43, San Diego State University44, University of Alaska Fairbanks45, Manchester Metropolitan University46, National Autonomous University of Mexico47, University of Kent48, City University of New York49, Victoria University of Wellington50, California Academy of Sciences51, Mote Marine Laboratory52, Osmania University53, White Oak Conservation54, Aaranyak55, University of California, Davis56, Museu Paraense Emílio Goeldi57, University of Stirling58
10 Oct 2008-Science
TL;DR: In this paper, the authors present a comprehensive assessment of the conservation status and distribution of the world's mammals, including marine mammals, using data collected by 1700+ experts, covering all 5487 species.
Abstract: Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action.

1,383 citations

Journal ArticleDOI
TL;DR: This work quantifies geographic patterns of endemism-scaled richness (“endemism richness”) of vascular plants across 90 terrestrial biogeographic regions, including islands, worldwide and evaluates their congruence with terrestrial vertebrates.
Abstract: Endemism and species richness are highly relevant to the global prioritization of conservation efforts in which oceanic islands have remained relatively neglected. When compared to mainland areas, oceanic islands in general are known for their high percentage of endemic species but only moderate levels of species richness, prompting the question of their relative conservation value. Here we quantify geographic patterns of endemism-scaled richness (“endemism richness”) of vascular plants across 90 terrestrial biogeographic regions, including islands, worldwide and evaluate their congruence with terrestrial vertebrates. Endemism richness of plants and vertebrates is strongly related, and values on islands exceed those of mainland regions by a factor of 9.5 and 8.1 for plants and vertebrates, respectively. Comparisons of different measures of past and future human impact and land cover change further reveal marked differences between mainland and island regions. While island and mainland regions suffered equally from past habitat loss, we find the human impact index, a measure of current threat, to be significantly higher on islands. Projected land-cover changes for the year 2100 indicate that land-use-driven changes on islands might strongly increase in the future. Given their conservation risks, smaller land areas, and high levels of endemism richness, islands may offer particularly high returns for species conservation efforts and therefore warrant a high priority in global biodiversity conservation in this century.

930 citations