Author
Carmen Andrade
Other affiliations: University of Castilla–La Mancha
Bio: Carmen Andrade is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Corrosion & Carbonation. The author has an hindex of 54, co-authored 281 publications receiving 10798 citations. Previous affiliations of Carmen Andrade include University of Castilla–La Mancha.
Topics: Corrosion, Carbonation, Chloride, Cement, Rebar
Papers published on a yearly basis
Papers
More filters
TL;DR: A critical review of the Rapid Chloride Permeability Test standarized by AASHTO is given in this paper, pointing out its limitations and errors but recognizing its contribution to the developing of a simple and quick test for chloride migration.
Abstract: A critical review is offered on the Rapid Chloride Permeability Test standarized by AASHTO, pointing out its limitations and errors but recognizing its contribution to the developing of a simple and quick test for chloride migration. Then another review is made on the electrochemical fundaments of the processes developped in concrete when an electrical field is applied and on the basic equations of mass transport (Nernst-Plank and Nernst-Einstein) which can be applied to calculate ionic movements. The limitations and assumptions needed for a simplified resolution of these equations, are presented, as well as numerical examples of calculation of the Effective Diffusion Coefficient of chlorides, Deff, in steady state condition. Finally, considerations on the possibility of calculation of Deff from simple resistivity measurements are also offered.
595 citations
TL;DR: In this article, a numerical model based on standard finite-element techniques is proposed for the simulation of cracking in concrete specimens when subjected to corrosion of their reinforcement, which is applied to four examples, which were simultaneously tested experimentally and reported in Part 1 of this paper.
Abstract: A numerical model based on standard finite-element techniques is proposed for the simulation of cracking in concrete specimens when subjected to corrosion of their reinforcement. A smeared-crack approach is used to model the behaviour of the concrete finite elements, while the corrosion, which is understood as the applied load on the structure, is modelled by a combination of initial strains and change of elastic properties, which are respectively equivalent to the expansion and softening of the steel elements at the rebar surface when they rust. The model is applied to four examples, which were simultaneously tested experimentally and reported in Part 1 of this paper, and the influence of the main parameters of the model in the response is studied separately. In particular, the effect on the crack-width rate of the specific volume of the rust being formed is quantitatively assessed.
432 citations
TL;DR: In this paper, the authors describe nondestructive electrochemical test methods for the estimation in large size concrete structures of the instantaneous corrosion current density, expressed in gA/cm 2, by means of the so-called Polarization Resistance technique, R o, in order to assess the condition of embedded steel reinforcement related to its corrosion.
Abstract: 1. SCOPE This Recommendation covers the description of nondestructive electrochemical test methods for the estimation in large size concrete structures of the instantaneous corrosion current density, ioorr, expressed in gA/cm 2, by means of the so-called Polarization Resistance technique, R o, in order to assess the condition of embedded steel reinforcement related to its corrosion. The values of i~orr, Can be used to assess the rate of degradation of concrete structures affected by reinforcement corrosion. However, they cannot give information on the actual loss in steel cross section which, at present, only can be assessed by means of direct visual observation. Values of the free corrosion potential or half-cell potential, Ecorr [V], of the embedded reinforcing steel and of the electrical concrete resistance, Re [f)], are obtained as preliminary steps of the Rp measurements. Values of the concrete resistivity, P [~m], can be calculated from Re values providing the geometrical arrangement of the electrodes enables this calculation. Both parameters, Ecorr and Re (or P) may be used to complement the reliability of the ico~r measurements.
428 citations
TL;DR: A review of the different electrochemnical methods used for measuring this parameter is made in this paper, where polarization curves, polarization resistance transient techniques and electrochemical impedance are commented on.
Abstract: The loss of metal per unit of surface and time defines the metallic corrosion rate. A review is made of the different electrochemnical methods used for measuring this parameter. Thus, polarization curves, polarization resistance transient techniques and electrochemical impedance are commented on. Some semiquantitative methods such as the measurement of the corrosion potential, concrete resistivity or galvanic current are also discussed. Concerning the application of electrochemical techniques for measuring corrosion rates on-site, the paper reviews some of the methods published in the literature with special attention to the sensorized confinement of the current. Finally, the values of corrosion rate measured in concrete specimens in the laboratory and on-site are given and levels of risk regarding loss in rebar cross-section are suggested.
421 citations
365 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
3,224 citations
University of Exeter1, École Normale Supérieure2, Norwich Research Park3, University of Groningen4, Wageningen University and Research Centre5, Ludwig Maximilian University of Munich6, Max Planck Society7, Commonwealth Scientific and Industrial Research Organisation8, Université Paris-Saclay9, Stanford University10, National Oceanic and Atmospheric Administration11, National Institute for Space Research12, Bermuda Institute of Ocean Sciences13, University of Southampton14, PSL Research University15, Japan Agency for Marine-Earth Science and Technology16, National Institute for Environmental Studies17, University of Maryland, College Park18, University of Leeds19, International Institute of Minnesota20, Flanders Marine Institute21, ETH Zurich22, University of East Anglia23, German Aerospace Center24, Woods Hole Research Center25, University of Illinois at Urbana–Champaign26, University of Toulouse27, Japan Meteorological Agency28, Plymouth Marine Laboratory29, University of Paris30, Hobart Corporation31, Oeschger Centre for Climate Change Research32, Tsinghua University33, National Center for Atmospheric Research34, Appalachian State University35, University of Colorado Boulder36, University of Washington37, Atlantic Oceanographic and Meteorological Laboratory38, Princeton University39, Met Office40, Leibniz Institute of Marine Sciences41, Auburn University42, University of Tasmania43, VU University Amsterdam44, Oak Ridge National Laboratory45, Sun Yat-sen University46, Nanjing University47
TL;DR: In this paper, the authors describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quere et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
1,764 citations
University of East Anglia1, University of Exeter2, Alfred Wegener Institute for Polar and Marine Research3, Ludwig Maximilian University of Munich4, Max Planck Society5, Commonwealth Scientific and Industrial Research Organisation6, Karlsruhe Institute of Technology7, Atlantic Oceanographic and Meteorological Laboratory8, Cooperative Institute for Marine and Atmospheric Studies9, École Normale Supérieure10, Centre national de la recherche scientifique11, University of Maryland, College Park12, University of Virginia13, Flanders Marine Institute14, Oak Ridge National Laboratory15, Woods Hole Research Center16, University of Illinois at Urbana–Champaign17, Geophysical Institute, University of Bergen18, Met Office19, University of California, San Diego20, Utrecht University21, Netherlands Environmental Assessment Agency22, University of Paris23, Oeschger Centre for Climate Change Research24, Tsinghua University25, National Center for Atmospheric Research26, Institute of Arctic and Alpine Research27, National Institute for Environmental Studies28, Hobart Corporation29, Cooperative Research Centre30, Japan Agency for Marine-Earth Science and Technology31, Wageningen University and Research Centre32, University of Groningen33, Bjerknes Centre for Climate Research34, Goddard Space Flight Center35, Leibniz Institute for Baltic Sea Research36, Princeton University37, Leibniz Institute of Marine Sciences38, National Oceanic and Atmospheric Administration39, Auburn University40, Food and Agriculture Organization41, VU University Amsterdam42
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: . Accurate assessment of anthropogenic carbon dioxide
( CO2 ) emissions and their redistribution among the atmosphere,
ocean, and terrestrial biosphere – the “global carbon budget” – is
important to better understand the global carbon cycle, support the
development of climate policies, and project future climate change. Here we
describe data sets and methodology to quantify the five major components of
the global carbon budget and their uncertainties. Fossil CO2
emissions ( EFF ) are based on energy statistics and cement
production data, while emissions from land use and land-use change ( ELUC ),
mainly deforestation, are based on land use and land-use change data and
bookkeeping models. Atmospheric CO2 concentration is measured
directly and its growth rate ( GATM ) is computed from the annual
changes in concentration. The ocean CO2 sink ( SOCEAN )
and terrestrial CO2 sink ( SLAND ) are estimated with
global process models constrained by observations. The resulting carbon
budget imbalance ( BIM ), the difference between the estimated
total emissions and the estimated changes in the atmosphere, ocean, and
terrestrial biosphere, is a measure of imperfect data and understanding of
the contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2008–2017), EFF was
9.4±0.5 GtC yr −1 , ELUC 1.5±0.7 GtC yr −1 , GATM 4.7±0.02 GtC yr −1 ,
SOCEAN 2.4±0.5 GtC yr −1 , and SLAND 3.2±0.8 GtC yr −1 , with a budget imbalance BIM of
0.5 GtC yr −1 indicating overestimated emissions and/or underestimated
sinks. For the year 2017 alone, the growth in EFF was about 1.6 %
and emissions increased to 9.9±0.5 GtC yr −1 . Also for 2017,
ELUC was 1.4±0.7 GtC yr −1 , GATM was 4.6±0.2 GtC yr −1 , SOCEAN was 2.5±0.5 GtC yr −1 , and SLAND was 3.8±0.8 GtC yr −1 ,
with a BIM of 0.3 GtC. The global atmospheric
CO2 concentration reached 405.0±0.1 ppm averaged over 2017.
For 2018, preliminary data for the first 6–9 months indicate a renewed
growth in EFF of + 2.7 % (range of 1.8 % to 3.7 %) based
on national emission projections for China, the US, the EU, and India and
projections of gross domestic product corrected for recent changes in the
carbon intensity of the economy for the rest of the world. The analysis
presented here shows that the mean and trend in the five components of the
global carbon budget are consistently estimated over the period of 1959–2017,
but discrepancies of up to 1 GtC yr −1 persist for the representation
of semi-decadal variability in CO2 fluxes. A detailed comparison
among individual estimates and the introduction of a broad range of
observations show (1) no consensus in the mean and trend in land-use change
emissions, (2) a persistent low agreement among the different methods on
the magnitude of the land CO2 flux in the northern extra-tropics,
and (3) an apparent underestimation of the CO2 variability by ocean
models, originating outside the tropics. This living data update documents
changes in the methods and data sets used in this new global carbon budget
and the progress in understanding the global carbon cycle compared with
previous publications of this data set (Le Quere et al., 2018, 2016,
2015a, b, 2014, 2013). All results presented here can be downloaded from
https://doi.org/10.18160/GCP-2018 .
1,458 citations
TL;DR: In this paper, a review of the state-of-the-art in the area of critical chloride thresholding of reinforced concrete is presented, highlighting the strong need for a practice-related test method, and focusing especially on experimental procedures.
Abstract: Chloride induced corrosion as the major cause for degradation of reinforced concrete has been the subject of great research efforts over the last fifty years. The present literature review summarises the state of the art by presenting the concept of the critical chloride content, discussing influencing factors, and assessing available measurement techniques. A large number of published chloride threshold values together with the respective experimental details are collected. While today's experience is mostly based on Portland cement, more modern studies with non-traditional binders often reported contradictory results. The present literature evaluation highlights the strong need for a practice-related test method, and, in this regard, focuses especially on experimental procedures by discussing advantages and drawbacks of methods and setups. It clearly emerges that many of the setups used to determine critical chloride contents are not suited to give realistic results.
982 citations