scispace - formally typeset
Search or ask a question
Author

Carmen Gaina

Bio: Carmen Gaina is an academic researcher from University of Oslo. The author has contributed to research in topics: Plate tectonics & Seafloor spreading. The author has an hindex of 46, co-authored 115 publications receiving 10160 citations. Previous affiliations of Carmen Gaina include Norwegian Academy of Science and Letters & University of Sydney.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a digital model of the age, spreading rate, and asymmetry at each grid node by linear interpolation between adjacent seafloor isochrons in the direction of spreading.
Abstract: We present four companion digital models of the age, age uncertainty, spreading rates, and spreading asymmetries of the world's ocean basins as geographic and Mercator grids with 2 arc min resolution. The grids include data from all the major ocean basins as well as detailed reconstructions of back-arc basins. The age, spreading rate, and asymmetry at each grid node are determined by linear interpolation between adjacent seafloor isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust are interpolated by geological estimates of the ages of passive continental margin segments. The age uncertainties for grid cells coinciding with marine magnetic anomaly identifications, observed or rotated to their conjugate ridge flanks, are based on the difference between gridded age and observed age. The uncertainties are also a function of the distance of a given grid cell to the nearest age observation and the proximity to fracture zones or other age discontinuities. Asymmetries in crustal accretion appear to be frequently related to asthenospheric flow from mantle plumes to spreading ridges, resulting in ridge jumps toward hot spots. We also use the new age grid to compute global residual basement depth grids from the difference between observed oceanic basement depth and predicted depth using three alternative age-depth relationships. The new set of grids helps to investigate prominent negative depth anomalies, which may be alternatively related to subducted slab material descending in the mantle or to asthenospheric flow. A combination of our digital grids and the associated relative and absolute plate motion model with seismic tomography and mantle convection model outputs represents a valuable set of tools to investigate geodynamic problems.

1,731 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of global plate motion model consisting of a set of continuously-closing topological plate polygons with associated plate boundaries and plate velocities since the break-up of the supercontinent Pangea is presented.

1,519 citations

Journal ArticleDOI
TL;DR: A significant number of new palaeomagnetic poles have become available since the last time a compilation was made (assembled in 2005, published in 2008) to indicate to us that a new and significantly expanded set of tables with palaeOMagnetic results would be valuable, with results coming from the Gondwana cratonic elements, Laurentia, Baltica/Europe, and Siberia as mentioned in this paper.

1,094 citations

Journal ArticleDOI
07 Mar 2008-Science
TL;DR: A mantle convection model is used to suggest that New Jersey subsided by 105 to 180 meters in the past 70 million years because of North America's westward passage over the subducted Farallon plate, which reconciles New Jersey margin–based sea-level estimates with ocean basin reconstructions.
Abstract: Earth9s long-term sea-level history is characterized by widespread continental flooding in the Cretaceous period (∼145 to 65 million years ago), followed by gradual regression of inland seas. However, published estimates of the Late Cretaceous sea-level high differ by half an order of magnitude, from ∼40 to ∼250 meters above the present level. The low estimate is based on the stratigraphy of the New Jersey margin. By assimilating marine geophysical data into reconstructions of ancient ocean basins, we model a Late Cretaceous sea level that is 170 (85 to 270) meters higher than it is today. We use a mantle convection model to suggest that New Jersey subsided by 105 to 180 meters in the past 70 million years because of North America9s westward passage over the subducted Farallon plate. This mechanism reconciles New Jersey margin–based sea-level estimates with ocean basin reconstructions.

651 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyze four different reference frames (paleomagnetic, African fixed hot spot, African moving hot spot and global moving hot spots) and develop a unifying approach for connecting a hot spot track system and a paleomagnetic absolute plate reference system into a hybrid model for the time period from the assembly of Pangea (∼320 Ma) to the present.
Abstract: [1] Plate tectonics constitutes our primary framework for understanding how the Earth works over geological timescales. High-resolution mapping of relative plate motions based on marine geophysical data has followed the discovery of geomagnetic reversals, mid-ocean ridges, transform faults, and seafloor spreading, cementing the plate tectonic paradigm. However, so-called “absolute plate motions,” describing how the fragments of the outer shell of the Earth have moved relative to a reference system such as the Earth's mantle, are still poorly understood. Accurate absolute plate motion models are essential surface boundary conditions for mantle convection models as well as for understanding past ocean circulation and climate as continent-ocean distributions change with time. A fundamental problem with deciphering absolute plate motions is that the Earth's rotation axis and the averaged magnetic dipole axis are not necessarily fixed to the mantle reference system. Absolute plate motion models based on volcanic hot spot tracks are largely confined to the last 130 Ma and ideally would require knowledge about the motions within the convecting mantle. In contrast, models based on paleomagnetic data reflect plate motion relative to the magnetic dipole axis for most of Earth's history but cannot provide paleolongitudes because of the axial symmetry of the Earth's magnetic dipole field. We analyze four different reference frames (paleomagnetic, African fixed hot spot, African moving hot spot, and global moving hot spot), discuss their uncertainties, and develop a unifying approach for connecting a hot spot track system and a paleomagnetic absolute plate reference system into a “hybrid” model for the time period from the assembly of Pangea (∼320 Ma) to the present. For the last 100 Ma we use a moving hot spot reference frame that takes mantle convection into account, and we connect this to a pre–100 Ma global paleomagnetic frame adjusted 5° in longitude to smooth the reference frame transition. Using plate driving force arguments and the mapping of reconstructed large igneous provinces to core–mantle boundary topography, we argue that continental paleolongitudes can be constrained with reasonable confidence.

644 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a model for the Cenozoic development of the region of SE Asia and the SW Pacific is presented and its implications are discussed, accompanied by computer animations in a variety of formats.

2,272 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a digital model of the age, spreading rate, and asymmetry at each grid node by linear interpolation between adjacent seafloor isochrons in the direction of spreading.
Abstract: We present four companion digital models of the age, age uncertainty, spreading rates, and spreading asymmetries of the world's ocean basins as geographic and Mercator grids with 2 arc min resolution. The grids include data from all the major ocean basins as well as detailed reconstructions of back-arc basins. The age, spreading rate, and asymmetry at each grid node are determined by linear interpolation between adjacent seafloor isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust are interpolated by geological estimates of the ages of passive continental margin segments. The age uncertainties for grid cells coinciding with marine magnetic anomaly identifications, observed or rotated to their conjugate ridge flanks, are based on the difference between gridded age and observed age. The uncertainties are also a function of the distance of a given grid cell to the nearest age observation and the proximity to fracture zones or other age discontinuities. Asymmetries in crustal accretion appear to be frequently related to asthenospheric flow from mantle plumes to spreading ridges, resulting in ridge jumps toward hot spots. We also use the new age grid to compute global residual basement depth grids from the difference between observed oceanic basement depth and predicted depth using three alternative age-depth relationships. The new set of grids helps to investigate prominent negative depth anomalies, which may be alternatively related to subducted slab material descending in the mantle or to asthenospheric flow. A combination of our digital grids and the associated relative and absolute plate motion model with seismic tomography and mantle convection model outputs represents a valuable set of tools to investigate geodynamic problems.

1,731 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of global plate motion model consisting of a set of continuously-closing topological plate polygons with associated plate boundaries and plate velocities since the break-up of the supercontinent Pangea is presented.

1,519 citations

Journal ArticleDOI
03 Oct 2008-Science
TL;DR: A history of sea-level fluctuations for the entire Paleozoic by using stratigraphic sections from pericratonic and cratonic basins is reconstructed, revealing a gradual rise through the Cambrian and a short-lived but prominent withdrawal in response to Hirnantian glaciation.
Abstract: Sea levels have been determined for most of the Paleozoic Era (542 to 251 million years ago), but an integrated history of sea levels has remained unrealized. We reconstructed a history of sea-level fluctuations for the entire Paleozoic by using stratigraphic sections from pericratonic and cratonic basins. Evaluation of the timing and amplitude of individual sea-level events reveals that the magnitude of change is the most problematic to estimate accurately. The long-term sea level shows a gradual rise through the Cambrian, reaching a zenith in the Late Ordovician, then a short-lived but prominent withdrawal in response to Hirnantian glaciation. Subsequent but decreasingly substantial eustatic highs occurred in the mid-Silurian, near the Middle/Late Devonian boundary, and in the latest Carboniferous. Eustatic lows are recorded in the early Devonian, near the Mississippian/Pennsylvanian boundary, and in the Late Permian. One hundred and seventy-two eustatic events are documented for the Paleozoic, varying in magnitude from a few tens of meters to ∼125 meters.

1,227 citations

Journal ArticleDOI
TL;DR: A significant number of new palaeomagnetic poles have become available since the last time a compilation was made (assembled in 2005, published in 2008) to indicate to us that a new and significantly expanded set of tables with palaeOMagnetic results would be valuable, with results coming from the Gondwana cratonic elements, Laurentia, Baltica/Europe, and Siberia as mentioned in this paper.

1,094 citations