scispace - formally typeset
Search or ask a question
Author

Carmen Peláz

Bio: Carmen Peláz is an academic researcher. The author has contributed to research in topics: Bacteriocin & Peptide sequence. The author has an hindex of 1, co-authored 1 publications receiving 184 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A bacteriocin produced by Pediococcus acidilactici has been purified to homogeneity by a rapid and simple four-step purification procedure which includes ammonium sulphate precipitation, chromatography with a cation-exchanger and Octyl Sepharose, and reverse-phase chromatography, indicating an approximately 80,000-fold increase in the specific activity and about a 6-fold rise in the total activity.
Abstract: A bacteriocin produced by Pediococcus acidilactici has been purified to homogeneity by a rapid and simple four-step purification procedure which includes ammonium sulphate precipitation, chromatography with a cation-exchanger and Octyl Sepharose, and reverse-phase chromatography. The purification resulted in an approximately 80000-fold increase in the specific activity and about a 6-fold increase in the total activity. The amino acid composition and sequencing data indicated that the bacteriocin contained 43–44 amino acid residues. The predicted M r and isoelectric point of the bacteriocin are about 4600 and 8.6, respectively. Comparing the amino acid sequence of this bacteriocin with the sequences of leucocin A-UAL 187, sakacin P and curvacin A (bacteriocins produced by Leuconostoc gelidum, Lactobacillus sake and Lactobacillus curvatus, respectively) revealed that all four bacteriocins had in their N-terminal region the sequence Tyr-Gly-Asn-Gly-Val-Xaa-Cys, indicating that this concensus sequence is of fundamental importance for this group of bacteriocins. The bacteriocin from P. acidilactici and sakacin P were very similar, having at least 25 common amino acid residues. The sequence similarity was greatest in the N-terminal half of the molecules – 17 of the first 19 residues were common – indicating the fundamental importance of this region. Leucocin A-UAL 187 and curvacin A had, respectively, at least 16 and 13 amino acid residues in common with the bacteriocin from P. acidilactici.

188 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram- positive pathogenic bacteria.

2,819 citations

Journal ArticleDOI
TL;DR: Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges that can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.
Abstract: Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.

2,051 citations

Journal ArticleDOI
TL;DR: The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.
Abstract: Lactic acid bacteria produce a variety of bacteriocins that have recently come under detailed investigation. The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.

2,013 citations

Journal ArticleDOI
TL;DR: The present review discusses recent findings concerning biosynthesis, genetics, and regulation of class II bacteriocins.
Abstract: A large number of new bacteriocins in lactic acid bacteria (LAB) has been characterized in recent years. Most of the new bacteriocins belong to the class II bacteriocins which are small (30–100 amino acids) heat-stable and commonly not post-translationally modified. While most bacteriocin producers synthesize only one bacteriocin, it has been shown that several LAB produce multiple bacteriocins (2–3 bacteriocins).

808 citations

Journal ArticleDOI
TL;DR: The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify whichclass IIa bacteriocin they protect against.
Abstract: Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.

698 citations