scispace - formally typeset
Search or ask a question
Author

Carol A. Barnes

Bio: Carol A. Barnes is an academic researcher from University of Arizona. The author has contributed to research in topics: Hippocampal formation & Hippocampus. The author has an hindex of 98, co-authored 272 publications receiving 37781 citations. Previous affiliations of Carol A. Barnes include University of Oslo & University of California, Davis.


Papers
More filters
Journal ArticleDOI
TL;DR: The amount of synaptic enhancement was statistically correlated with the ability to perform the circular platform task both within and between groups, and the aftereffects of the high-frequency stimulation selectively impaired the old rats' spontaneous alternation behavior on a T-maze.
Abstract: Neurophysiological and behavioral measures were obtained from 32 senescent (28--34 mo) and 32 mature adult (10--16 mo) rats. Extracellularly recorded synaptic responses were obtained from electrodes chronically implanted in the fascia dentata and perforant path. The rats were first tested on a circular platform, which favored the use of spatial cues for its solution, and the senescent rats were shown to exhibit poorer memory for the rewarded place. When granule cell synaptic responses were recorded after a single session of very brief high-frequency stimulation, the amount of elevation and time course of decline were equivalent between age groups. Af ter three repetitions, however, the young rats maintained the increased synaptic strength for at least 14 days, whereas the old rats declined after the first session. The amount of synaptic enhancement was statistically correlated with the ability to perform the circular platform task both within and between groups. Furthermore, the aftereffects of the high-frequency stimulation selectively impaired the old rats' spontaneous alternation behavior on a T-maze. Certain other neurophysiological and electroencephalographic measures did not distinguish between age groups. The results are discussed in terms of the synaptic theory of memory formation and of their relevance to the aging process.

1,914 citations

Journal ArticleDOI
TL;DR: Large‐scale parallel recordings are made use of to clarify and extend the finding that a cell's spike activity advances to earlier phases of the theta cycle as the rat passes through the cell's place field, and to show Granule cells of the fascia dentata are also modulated by theta.
Abstract: O'Keefe and Recce [1993] Hippocampus 3:317-330 described an interaction between the hippocampal theta rhythm and the spatial firing of pyramidal cells in the CA1 region of the rat hippocampus: they found that a cell's spike activity advances to earlier phases of the theta cycle as the rat passes through the cell's place field. The present study makes use of large-scale parallel recordings to clarify and extend this finding in several ways: 1) Most CA1 pyramidal cells show maximal activity at the same phase of the theta cycle. Although individual units exhibit deeper modulation, the depth of modulation of CA1 population activity is about 50%. The peak firing of inhibitory interneurons in CA1 occurs about 60 degrees in advance of the peak firing of pyramidal cells, but different interneurons vary widely in their peak phases. 2) The first spikes, as the rat enters a pyramidal cell's place field, come 90 degrees-120 degrees after the phase of maximal pyramidal cell population activity, near the phase where inhibition is least. 3) The phase advance is typically an accelerating, rather than linear, function of position within the place field. 4) These phenomena occur both on linear tracks and in two-dimensional environments where locomotion is not constrained to specific paths. 5) In two-dimensional environments, place-related firing is more spatially specific during the early part of the theta cycle than during the late part. This is also true, to a lesser extent, on a linear track. Thus, spatial selectivity waxes and wanes over the theta cycle. 6) Granule cells of the fascia dentata are also modulated by theta. The depth of modulation for the granule cell population approaches 100%, and the peak activity of the granule cell population comes about 90 degrees earlier in the theta cycle than the peak firing of CA1 pyramidal cells. 7) Granule cells, like pyramidal cells, show robust phase precession. 8) Cross-correlation analysis shows that portions of the temporal sequence of CA1 pyramidal cell place fields are replicated repeatedly within individual theta cycles, in highly compressed form. The compression ratio can be as much as 10:1. These findings indicate that phase precession is a very robust effect, distributed across the entire hippocampal population, and that it is likely to be inherited from the fascia dentata or an earlier stage in the hippocampal circuit, rather than generated intrinsically within CA1. It is hypothesized that the compression of temporal sequences of place fields within individual theta cycles permits the use of long-term potentiation for learning of sequential structure, thereby giving a temporal dimension to hippocampal memory traces.

1,551 citations

Journal ArticleDOI
TL;DR: Major advances in understanding of age-related changes in the medial temporal lobe and prefrontal cortex are discussed and how these changes in functional plasticity contribute to behavioural impairments in the absence of significant pathology.
Abstract: The mechanisms involved in plasticity in the nervous system are thought to support cognition, and some of these processes are affected during normal ageing. Notably, cognitive functions that rely on the medial temporal lobe and prefrontal cortex, such as learning, memory and executive function, show considerable age-related decline. It is therefore not surprising that several neural mechanisms in these brain areas also seem to be particularly vulnerable during the ageing process. In this review, we discuss major advances in our understanding of age-related changes in the medial temporal lobe and prefrontal cortex and how these changes in functional plasticity contribute to behavioural impairments in the absence of significant pathology.

1,358 citations

Journal ArticleDOI
01 Aug 1993-Neuron
TL;DR: The studies indicate that COX-2 expression may be important in regulating prostaglandin signaling in brain, and the marked inducibility in neurons by synaptic stimuli suggests a role in activity-dependent plasticity.

1,220 citations

Journal ArticleDOI
01 Feb 1995-Neuron
TL;DR: Analysis of the deduced amino acid sequence indicates a region of homology with alpha-spectrin, and observations suggest that Arc may play a role in activity-dependent plasticity of dendrites.

1,197 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The field of neuroscience has, after a long period of looking the other way, again embraced emotion as an important research area, and much of the progress has come from studies of fear, and especially fear conditioning as mentioned in this paper.
Abstract: The field of neuroscience has, after a long period of looking the other way, again embraced emotion as an important research area. Much of the progress has come from studies of fear, and especially fear conditioning. This work has pin- pointed the amygdala as an important component of the system involved in the acqui- sition, storage, and expression of fear memory and has elucidated in detail how stimuli enter, travel through, and exit the amygdala. Some progress has also been made in understanding the cellular and molecular mechanisms that underlie fear conditioning, and recent studies have also shown that the findings from experimental animals apply to the human brain. It is important to remember why this work on emotion succeeded where past efforts failed. It focused on a psychologically well-defined aspect of emo- tion, avoided vague and poorly defined concepts such as "affect," "hedonic tone," or "emotional feelings," and used a simple and straightforward experimental approach. With so much research being done in this area today, it is important that the mistakes of the past not be made again. It is also time to expand from this foundation into broader aspects of mind and behavior

7,347 citations

Journal ArticleDOI
24 Jun 1982-Nature
TL;DR: It is reported that, in addition to a spatial discrimination impairment, total hippocampal lesions also cause a profound and lasting placenavigational impairment that can be dissociated from correlated motor, motivational and reinforcement aspects of the procedure.
Abstract: Electrophysiological studies have shown that single cells in the hippocampus respond during spatial learning and exploration1–4, some firing only when animals enter specific and restricted areas of a familiar environment. Deficits in spatial learning and memory are found after lesions of the hippocampus and its extrinsic fibre connections5,6 following damage to the medial septal nucleus which successfully disrupts the hippocampal theta rhythm7, and in senescent rats which also show a correlated reduction in synaptic enhancement on the perforant path input to the hippocampus8. We now report, using a novel behavioural procedure requiring search for a hidden goal, that, in addition to a spatial discrimination impairment, total hippocampal lesions also cause a profound and lasting placenavigational impairment that can be dissociated from correlated motor, motivational and reinforcement aspects of the procedure.

6,143 citations

Journal ArticleDOI
25 Jun 2004-Science
TL;DR: Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.
Abstract: Clocks tick, bridges and skyscrapers vibrate, neuronal networks oscillate. Are neuronal oscillations an inevitable by-product, similar to bridge vibrations, or an essential part of the brain’s design? Mammalian cortical neurons form behavior-dependent oscillating networks of various sizes, which span five orders of magnitude in frequency. These oscillations are phylogenetically preserved, suggesting that they are functionally relevant. Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.

5,512 citations

Journal ArticleDOI
TL;DR: The role of the hippocampus is considered, which is needed temporarily to bind together distributed sites in neocortex that together represent a whole memory.
Abstract: This article considers the role of the hippocampus in memory function. A central thesis is that work with rats, monkeys, and humans--which has sometimes seemed to proceed independently in 3 separate literatures--is now largely in agreement about the function of the hippocampus and related structures. A biological perspective is presented, which proposes multiple memory systems with different functions and distinct anatomical organizations. The hippocampus (together with anatomically related structures) is essential for a specific kind of memory, here termed declarative memory (similar terms include explicit and relational). Declarative memory is contrasted with a heterogeneous collection of nondeclarative (implicit) memory abilities that do not require the hippocampus (skills and habits, simple conditioning, and the phenomenon of priming). The hippocampus is needed temporarily to bind together distributed sites in neocortex that together represent a whole memory.

5,283 citations