scispace - formally typeset
Search or ask a question
Author

Carol Crooks

Bio: Carol Crooks is an academic researcher from Cleveland Clinic. The author has contributed to research in topics: Heme & Tetrahydrobiopterin. The author has an hindex of 4, co-authored 4 publications receiving 328 citations. Previous affiliations of Carol Crooks include Cleveland Clinic Lerner Research Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that cav-1 binding to eNOS reductase compromises its ability to bind CaM and to donate electrons to the eN OS heme, thereby inhibiting NO synthesis.

152 citations

Journal ArticleDOI
TL;DR: An N‐terminal segment that contains a β‐hairpin hook, a zinc ligation center and part of the H4B‐binding site is examined for its role in dimerization, catalysis, and H 4B and substrate interactions and suggests a mechanism whereby N‐ terminal hooks exchange between subunits in solution to stabilize the dimer.
Abstract: The oxygenase domain of the inducible nitric oxide synthase (iNOSox; residues 1-498) is a dimer that binds heme, L-arginine and tetrahydrobiopterin (H(4)B) and is the site for nitric oxide synthesis. We examined an N-terminal segment that contains a beta-hairpin hook, a zinc ligation center and part of the H(4)B-binding site for its role in dimerization, catalysis, and H(4)B and substrate interactions. Deletion mutagenesis identified the minimum catalytic core and indicated that an intact N-terminal beta-hairpin hook is essential. Alanine screening mutagenesis of conserved residues in the hook revealed five positions (K82, N83, D92, T93 and H95) where native properties were perturbed. Mutants fell into two classes: (i) incorrigible mutants that disrupt side-chain hydrogen bonds and packing interactions with the iNOSox C-terminus (N83, D92 and H95) and cause permanent defects in homodimer formation, H(4)B binding and activity; and (ii) reformable mutants that destabilize interactions of the residue main chain (K82 and T93) with the C-terminus and cause similar defects that were reversible with high concentrations of H(4)B. Heterodimers comprised of a hook-defective iNOSox mutant subunit and a full-length iNOS subunit were active in almost all cases. This suggests a mechanism whereby N-terminal hooks exchange between subunits in solution to stabilize the dimer.

68 citations

Journal ArticleDOI
TL;DR: Conservation of Trp-409 among different NOS suggests that the ability of this residue to regulate heme reduction and NO complex formation is important for enzyme physiologic function.

62 citations

Journal ArticleDOI
30 Aug 2001-Oncogene
TL;DR: It is suggested that, because of its localization in a region frequently showing LOH and the observation of inactivation of this gene in glioblastoma cells, WDR11 is a candidate gene for the frequently proposed tumor suppressor gene in 10q25–26 which is involved in tumorigenesis of glial and other tumors showing frequent alterations in the distal 10q region.
Abstract: Allelic deletions of 10q25-26 and 19q13.3-13.4 are the most common genetic alterations in glial tumors. We have identified a balanced t(10;19) reciprocal translocation in the A172 glioblastoma cell line which involves both critical regions on chromosomes 10 and 19. In addition, loss of an entire copy of chromosome 10 has occurred in this cell line suggesting that the translocation event may provide a highly specific critical inactivating event in a gene responsible for tumorigenesis. Positional cloning of this translocation breakpoint resulted in the identification of a novel chromosome 10 gene, WDR11, which is a member of the WD-repeat gene family. The WDR11 gene is ubiquitously expressed, including normal brain and glial tumors. WDR11 is composed of 29 exons distributed over 58 kilobases and oriented towards the telomere. The translocation resulted in deletion of exon 5 and consequently fusion of intron 4 of WDR11 to the 3' untranslated region of a novel member, ZNF320, of the Kruppel-like zinc finger gene family. Since ZNF320 is oriented toward the centromere of chromosome 19, both genes appeared on the same derivative chromosome der(10). The chimeric transcript encodes the WDR11 polypeptide, which is truncated after the second of six WD-repeats. ZNF320 is also expressed in A172 cells, although it is not clear if the translocation affects the expression of the altered gene because of the presence of another unrearranged gene on chromosome 19. We suggest that, because of its localization in a region frequently showing LOH and the observation of inactivation of this gene in glioblastoma cells, WDR11 is a candidate gene for the frequently proposed tumor suppressor gene in 10q25-26 which is involved in tumorigenesis of glial and other tumors showing frequent alterations in the distal 10q region.

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in the authors' understanding of this enzyme family.
Abstract: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.

3,418 citations

Journal ArticleDOI
TL;DR: This review will concentrate on findings with P-450cam of the Pseudomonas putida camphor-5-exo-hydroxylase, and attention will be drawn to parallel and contrasting examples from other P- 450s as appropriate.
Abstract: Two decades have passed since the discovery in liver microsomes of a haemprotein that forms a reduced-CO complex with the absorptive maximum of the Soret at 450 nm (Klingenberg, 1958; Garfinkel, 1958) and the identification of this protein as a new cytochrome: pigment cytochrome, P-450 (Omura and Sato, 1962, 1964a). In the intervening years, the study of cytochrome P-450 dependent monoxygenases has expanded exponentially. From the first crude attempts to solubilise a P-450 (Omura and Sato, 1963, 1964b) to the determination of the primary, secondary, and tertiary structure of cytochrome P-450cam by amino acid sequencing (Haniu et al., 1982a,b) and x-ray crystallography (Poulos et al., 1984) our understanding of this unique family of proteins has been advancing on all fronts. Since, perhaps, the greatest understanding of the structure and mechanism of P-450s has come from concentrated study of P-450cam of the Pseudomonas putida camphor-5-exo-hydroxylase, this review will concentrate on findings with P-450cam; attention will be drawn to parallel and contrasting examples from other P-450s as appropriate.

1,721 citations

Journal ArticleDOI
TL;DR: This report summarizes some of the current information regarding NO synthase structure-function, reaction mechanism, control of catalysis, and protein interactions.

1,209 citations

Journal ArticleDOI
TL;DR: This review seeks to update the working definition of caveolae, describe the functional roles of the caveolin gene family, and summarize the evidence that supports a role for Caveolae as mediators of a number of cellular signaling processes.
Abstract: Caveolae were originally identified as flask-shaped invaginations of the plasma membrane in endothelial and epithelial cells (14). Prior to the development of biochemical methods for their purification, caveolae were thought to principally mediate the transcellular movement of molecules (101, 145). Recently, the development of novel purification procedures has greatly expanded our knowledge regarding the putative functions of caveolae in vivo. In this review, we seek to update the working definition of caveolae, describe the functional roles of the caveolin gene family, and summarize the evidence that supports a role for caveolae as mediators of a number of cellular signaling processes.

1,040 citations

Journal ArticleDOI
TL;DR: Simultaneous alterations in the phosphorylation of Ser(1177) and Thr(495) in response to a variety of stimuli are regulated by a number of kinases and phosphatases that continuously associate with and dissociate from the eNOS signaling complex.
Abstract: The endothelial nitric oxide synthase (eNOS), the expression of which is regulated by a range of transcriptional and posttranscriptional mechanisms, generates nitric oxide (NO) in response to a number of stimuli. The physiologically most important determinants for the continuous generation of NO and thus the regulation of local blood flow are fluid shear stress and pulsatile stretch. Although eNOS activity is coupled to changes in endothelial cell Ca(2+) levels, an increase in Ca(2+) alone is not sufficient to affect enzyme activity because the binding of calmodulin (CaM) and the flow of electrons from the reductase to the oxygenase domain of the enzyme is dependent on protein phosphorylation and dephosphorylation. Two amino acids seem to be particularly important in regulating eNOS activity and these are a serine residue in the reductase domain (Ser(1177)) and a threonine residue (Thr(495)) located within the CaM-binding domain. Simultaneous alterations in the phosphorylation of Ser(1177) and Thr(495) in response to a variety of stimuli are regulated by a number of kinases and phosphatases that continuously associate with and dissociate from the eNOS signaling complex. eNOS associated proteins, such as caveolin, heat shock protein 90, eNOS interacting protein, and possibly also motor proteins provide the scaffold for the formation of the protein complex as well as its intracellular localization.

948 citations