scispace - formally typeset
Search or ask a question
Author

Carolina Cruciani

Bio: Carolina Cruciani is an academic researcher from University of Zurich. The author has contributed to research in topics: Multiple sclerosis & Antigen. The author has an hindex of 5, co-authored 7 publications receiving 247 citations. Previous affiliations of Carolina Cruciani include University of Verona & Imperial College London.

Papers
More filters
Journal ArticleDOI
TL;DR: Gray matter damage and meningeal inflammation have been associated with early disease onset and a more aggressive disease course in multiple sclerosis, but can these changes be identified in the patient early in the disease course?
Abstract: Objective Gray matter (GM) damage and meningeal inflammation have been associated with early disease onset and a more aggressive disease course in multiple sclerosis (MS), but can these changes be identified in the patient early in the disease course? Methods To identify possible biomarkers linking meningeal inflammation, GM damage, and disease severity, gene and protein expression were analyzed in meninges and cerebrospinal fluid (CSF) from 27 postmortem secondary progressive MS and 14 control cases. Combined cytokine/chemokine CSF profiling and 3T magnetic resonance imaging (MRI) were performed at diagnosis in 2 independent cohorts of MS patients (35 and 38 subjects) and in 26 non-MS patients. Results Increased expression of proinflammatory cytokines (IFNγ, TNF, IL2, and IL22) and molecules related to sustained B-cell activity and lymphoid-neogenesis (CXCL13, CXCL10, LTα, IL6, and IL10) was detected in the meninges and CSF of postmortem MS cases with high levels of meningeal inflammation and GM demyelination. Similar proinflammatory patterns, including increased levels of CXCL13, TNF, IFNγ, CXCL12, IL6, IL8, and IL10, together with high levels of BAFF, APRIL, LIGHT, TWEAK, sTNFR1, sCD163, MMP2, and pentraxin III, were detected in the CSF of MS patients with higher levels of GM damage at diagnosis. Interpretation A common pattern of intrathecal (meninges and CSF) inflammatory profile strongly correlates with increased cortical pathology, both at the time of diagnosis and at death. These results suggest a role for detailed CSF analysis combined with MRI as a prognostic marker for more aggressive MS. Ann Neurol 2018 Ann Neurol 2018;83:739-755.

186 citations

Journal ArticleDOI
TL;DR: The inflammatory milieu generated in the subarachnoid space of the multiple sclerosis meninges by infiltrating immune cells leads to increased demyelinating and neurodegenerative pathology in the underlying grey matter due to changes in the balance of TNF signalling.
Abstract: Recent studies of cortical pathology in secondary progressive multiple sclerosis have shown that a more severe clinical course and the presence of extended subpial grey matter lesions with significant neuronal/glial loss and microglial activation are associated with meningeal inflammation, including the presence of lymphoid-like structures in the subarachnoid space in a proportion of cases. To investigate the molecular consequences of pro-inflammatory and cytotoxic molecules diffusing from the meninges into the underlying grey matter, we carried out gene expression profiling analysis of the motor cortex from 20 post-mortem multiple sclerosis brains with and without substantial meningeal inflammation and 10 non-neurological controls. Gene expression profiling of grey matter lesions and normal appearing grey matter not only confirmed the substantial pathological cell changes, which were greatest in multiple sclerosis cases with increased meningeal inflammation, but also demonstrated the upregulation of multiple genes/pathways associated with the inflammatory response. In particular, genes involved in tumour necrosis factor (TNF) signalling were significantly deregulated in MS cases compared with controls. Increased meningeal inflammation was found to be associated with a shift in the balance of TNF signalling away from TNFR1/TNFR2 and NFkB-mediated anti-apoptotic pathways towards TNFR1- and RIPK3-mediated pro-apoptotic/pro-necroptotic signalling in the grey matter, which was confirmed by RT-PCR analysis. TNFR1 was found expressed preferentially on neurons and oligodendrocytes in MS cortical grey matter, whereas TNFR2 was predominantly expressed by astrocytes and microglia. We suggest that the inflammatory milieu generated in the subarachnoid space of the multiple sclerosis meninges by infiltrating immune cells leads to increased demyelinating and neurodegenerative pathology in the underlying grey matter due to changes in the balance of TNF signalling.

76 citations

Journal ArticleDOI
TL;DR: GDP-l-fucose synthase is an autoantigen recognized by cerebrospinal fluid–infiltrating CD4+ T cells from HLA-DRB3*–positive patients with multiple sclerosis, and the possible role of this antigen as an inducer or driver of pathogenic autoimmune responses in multiple sclerosis is suggested.
Abstract: Multiple sclerosis is an immune-mediated autoimmune disease of the central nervous system that develops in genetically susceptible individuals and likely requires environmental triggers. The autoantigens and molecular mimics triggering the autoimmune response in multiple sclerosis remain incompletely understood. By using a brain-infiltrating CD4 + T cell clone that is clonally expanded in multiple sclerosis brain lesions and a systematic approach for the identification of its target antigens, positional scanning peptide libraries in combination with biometrical analysis, we have identified guanosine diphosphate (GDP)–l-fucose synthase as an autoantigen that is recognized by cerebrospinal fluid–infiltrating CD4 + T cells from HLA-DRB3*–positive patients. Significant associations were found between reactivity to GDP-l-fucose synthase peptides and DRB3*02:02 expression, along with reactivity against an immunodominant myelin basic protein peptide. These results, coupled with the cross-recognition of homologous peptides from gut microbiota, suggest a possible role of this antigen as an inducer or driver of pathogenic autoimmune responses in multiple sclerosis.

66 citations

Journal ArticleDOI
TL;DR: It is concluded that citrullination does not appear to be an important activating factor of a T cell response, but could be the consequence of an immune- or inflammatory response.
Abstract: Immune responses to citrullinated peptides have been described in autoimmune diseases like rheumatoid arthritis (RA) and multiple sclerosis (MS). We investigated the post-translational modification (PTM), arginine to citrulline, in brain tissue of MS patients and controls (C) by proteomics and subsequently the cellular immune response of cerebrospinal fluid (CSF)-infiltrating T cells to citrullinated and unmodified peptides of myelin basic protein (MBP). Using specifically adapted tissue extraction- and combined data interpretation protocols we could establish a map of citrullinated proteins by identifying more than 80 proteins with two or more citrullinated peptides in human brain tissue. We report many of them for the first time. For the already described citrullinated proteins MBP, GFAP, and vimentin, we could identify additional citrullinated sites. The number of modified proteins in MS white matter was higher than control tissue. Citrullinated peptides are considered neoepitopes that may trigger autoreactivity. We used newly identified epitopes and previously reported immunodominant myelin peptides in their citrullinated and non-citrullinated form to address the recognition of CSF-infiltrating CD4+ T cells from 22 MS patients by measuring proliferation and IFN-γ secretion. We did not detect marked responses to citrullinated peptides, but slightly more strongly to the non-modified version. Based on these data, we conclude that citrullination does not appear to be an important activating factor of a T cell response, but could be the consequence of an immune- or inflammatory response. Our approach allowed us to perform a deep proteome analysis and opens new technical possibilities to analyze complex PTM patterns on minute quantities of rare tissue samples.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is suggested that in MS patients two types of inflammation occur, which develop in parallel but partially independent from each other, and that CD8+ T-lymphocytes remain in the brain and spinal cord as tissue resident cells, which may focally propagate neuroinflammation when they re-encounter their cognate antigen.
Abstract: In the majority of patients multiple sclerosis starts with a relapsing remitting course (RRMS), which may at later times transform into secondary progressive disease (SPMS). In a minority of patients the relapsing remitting disease is skipped and the patients show progression from the onset (primary progressive MS, PPMS). Evidence obtained so far indicate major differences between RRMS and progressive MS, but no essential differences between SPMS and PPMS, with the exception of a lower incidence in the global load of focal white matter lesions and in particular in the presence of classical active plaques in PPMS. We suggest that in MS patients two types of inflammation occur, which develop in parallel but partially independent from each other. The first is the focal bulk invasion of T- and B-lymphocytes with profound blood brain barrier leakage, which predominately affects the white matter, and which gives rise to classical active demyelinated plaques. The other type of inflammation is a slow accumulation of T-cells and B-cells in the absence of major blood brain barrier damage in the connective tissue spaces of the brain, such as the meninges and the large perivascular Virchow Robin spaces, where they may form aggregates or in most severe cases structures in part resembling tertiary lymph follicles. This type of inflammation is associated with the formation of subpial demyelinated lesions in the cerebral and cerebellar cortex, with slow expansion of pre-existing lesions in the white matter and with diffuse neurodegeneration in the normal appearing white or gray matter. The first type of inflammation dominates in acute and relapsing MS. The second type of inflammation is already present in early stages of MS, but gradually increases with disease duration and patient age. It is suggested that CD8+ T-lymphocytes remain in the brain and spinal cord as tissue resident cells, which may focally propagate neuroinflammation, when they re-encounter their cognate antigen. B-lymphocytes may propagate demyelination and neurodegeneration, most likely by producing soluble neurotoxic factors. Whether lymphocytes within the brain tissue of MS lesions have also regulatory functions is presently unknown. Key open questions in MS research are the identification of the target antigen recognized by tissue resident CD8+ T-cells and B-cells and the molecular nature of the soluble inflammatory mediators, which may trigger tissue damage.

367 citations

Journal ArticleDOI
TL;DR: The biology of myelin, the expanded relationship of myelinating oligodendrocytes with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyELitis optica spectrum disorders are reviewed.
Abstract: Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was...

274 citations

Journal ArticleDOI
TL;DR: The mechanisms through which the microbiota contributes to the predisposition, initiation and perpetuation of immune-mediated diseases, and the therapeutic avenues that either target the microbiota, the barrier surfaces or the host immune system to restore tolerance and homeostasis are discussed.
Abstract: Host-microbiota interactions are fundamental for the development of the immune system. Drastic changes in modern environments and lifestyles have led to an imbalance of this evolutionarily ancient process, coinciding with a steep rise in immune-mediated diseases such as autoimmune, allergic and chronic inflammatory disorders. There is an urgent need to better understand these diseases in the context of mucosal and skin microbiota. This Review discusses the mechanisms of how the microbiota contributes to the predisposition, initiation and perpetuation of immune-mediated diseases in the context of a genetically prone host. It is timely owing to the wealth of new studies that recently contributed to this field, ranging from metagenomic studies in humans and mechanistic studies of host-microorganism interactions in gnotobiotic models and in vitro systems, to molecular mechanisms with broader implications across immune-mediated diseases. We focus on the general principles, such as breaches in immune tolerance and barriers, leading to the promotion of immune-mediated diseases by gut, oral and skin microbiota. Lastly, the therapeutic avenues that either target the microbiota, the barrier surfaces or the host immune system to restore tolerance and homeostasis will be explored.

203 citations

28 Nov 2013
TL;DR: Using the ImmunoChip custom genotyping array, this article analyzed 14,498 subjects with multiple sclerosis and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (P < 1.0 × 10(-4)).
Abstract: Using the ImmunoChip custom genotyping array, we analyzed 14,498 subjects with multiple sclerosis and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (P < 1.0 × 10(-4)). In a replication phase, we combined these data with previous genome-wide association study (GWAS) data from an independent 14,802 subjects with multiple sclerosis and 26,703 healthy controls. In these 80,094 individuals of European ancestry, we identified 48 new susceptibility variants (P < 5.0 × 10(-8)), 3 of which we found after conditioning on previously identified variants. Thus, there are now 110 established multiple sclerosis risk variants at 103 discrete loci outside of the major histocompatibility complex. With high-resolution Bayesian fine mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalog of multiple sclerosis risk variants and illustrates the value of fine mapping in the resolution of GWAS signals.

152 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the current knowledge of astrocyte behavior in MS and EAE is presented, where the authors define the temporal and anatomical profile of astroglial activation, then focus on key processes they participate in.
Abstract: Neuroinflammation is the coordinated response of the central nervous system (CNS) to threats to its integrity posed by a variety of conditions, including autoimmunity, pathogens and trauma. Activated astrocytes, in concert with other cellular elements of the CNS and immune system, are important players in the modulation of the neuroinflammatory response. During neurological disease, they produce and respond to cellular signals that often lead to dichotomous processes, which can promote further damage or contribute to repair. This occurs also in multiple sclerosis (MS), where astrocytes are now recognized as key components of its immunopathology. Evidence supporting this role has emerged not only from studies in MS patients, but also from animal models, among which the experimental autoimmune encephalomyelitis (EAE) model has proved especially instrumental. Based on this premise, the purpose of the present review is to summarize the current knowledge of astrocyte behavior in MS and EAE. Following a brief description of the pathological characteristics of the two diseases and the main functional roles of astrocytes in CNS physiology, we will delve into the specific responses of this cell population, analyzing MS and EAE in parallel. We will define the temporal and anatomical profile of astroglial activation, then focus on key processes they participate in. These include: (1) production and response to soluble mediators (e.g., cytokines and chemokines), (2) regulation of oxidative stress, and (3) maintenance of BBB integrity and function. Finally, we will review the state of the art on the available methods to measure astroglial activation in vivo in MS patients, and how this could be exploited to optimize diagnosis, prognosis and treatment decisions. Ultimately, we believe that integrating the knowledge obtained from studies in MS and EAE may help not only better understand the pathophysiology of MS, but also uncover new signals to be targeted for therapeutic intervention.

138 citations