scispace - formally typeset
Search or ask a question
Author

Carolina Ilbäck

Bio: Carolina Ilbäck is an academic researcher from Uppsala University. The author has contributed to research in topics: Drug resistance & Antibiotics. The author has an hindex of 1, co-authored 1 publications receiving 1082 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations.
Abstract: The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations.

1,308 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The aim of the present paper is to critically review the fate and removal of various antibiotics in wastewater treatment, focusing on different processes (i.e. biological processes, advanced treatment technologies and disinfection) in view of the current concerns related to the induction of toxic effects in aquatic and terrestrial organisms.

1,516 citations

Journal ArticleDOI
TL;DR: The main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment are discussed.
Abstract: Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.

1,495 citations

Journal ArticleDOI
TL;DR: The ecology of antibiotics and the ability of subinhibitory concentrations to select for bacterial resistance are discussed and the effects of low-level drug exposure on bacterial physiology are considered, including the generation of genetic and phenotypic variability, as well as the able of antibiotics to function as signalling molecules.
Abstract: The widespread use of antibiotics results in the generation of antibiotic concentration gradients in humans, livestock and the environment. Thus, bacteria are frequently exposed to non-lethal (that is, subinhibitory) concentrations of drugs, and recent evidence suggests that this is likely to have an important role in the evolution of antibiotic resistance. In this Review, we discuss the ecology of antibiotics and the ability of subinhibitory concentrations to select for bacterial resistance. We also consider the effects of low-level drug exposure on bacterial physiology, including the generation of genetic and phenotypic variability, as well as the ability of antibiotics to function as signalling molecules. Together, these effects accelerate the emergence and spread of antibiotic-resistant bacteria among humans and animals.

1,226 citations

Journal ArticleDOI
TL;DR: Although the economics of the pharmaceutical industry continue to restrict investment in novel biomedical responses, action must be taken to avoid the conjunction of factors that promote evolution and spread of antibiotic resistance.
Abstract: During the past 10 years, multidrug-resistant Gram-negative Enterobacteriaceae have become a substantial challenge to infection control. It has been suggested by clinicians that the effectiveness of antibiotics is in such rapid decline that, depending on the pathogen concerned, their future utility can be measured in decades or even years. Unless the rise in antibiotic resistance can be reversed, we can expect to see a substantial rise in incurable infection and fatality in both developed and developing regions. Antibiotic resistance develops through complex interactions, with resistance arising by de-novo mutation under clinical antibiotic selection or frequently by acquisition of mobile genes that have evolved over time in bacteria in the environment. The reservoir of resistance genes in the environment is due to a mix of naturally occurring resistance and those present in animal and human waste and the selective effects of pollutants, which can co-select for mobile genetic elements carrying multiple resistant genes. Less attention has been given to how anthropogenic activity might be causing evolution of antibiotic resistance in the environment. Although the economics of the pharmaceutical industry continue to restrict investment in novel biomedical responses, action must be taken to avoid the conjunction of factors that promote evolution and spread of antibiotic resistance.

893 citations

Journal ArticleDOI
TL;DR: This review presents the current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved the capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.
Abstract: Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called "recalcitrance" and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.

862 citations