scispace - formally typeset
Search or ask a question
Author

Caroline Benz

Bio: Caroline Benz is an academic researcher from Uppsala University. The author has contributed to research in topics: Short linear motif & Coronavirus. The author has an hindex of 1, co-authored 4 publications receiving 7 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein.
Abstract: Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.

31 citations

Posted ContentDOI
13 Apr 2021-bioRxiv
TL;DR: The second generation human disorderome (HD2) as discussed by the authors is an optimized ProP-PD library that tiles all disordered regions of the human proteome and allows the screening of ~1,000,000 overlapping peptides in a single binding assay.
Abstract: Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies using a wide range of experimental approaches have identified tens of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional and cell type-specific interactions are likely to be disproportionately under-represented. Moreover, for most known protein-protein interactions the binding regions remain uncharacterized. We previously developed proteomic peptide phage display (ProP-PD), a method for simultaneous proteome-scale identification of short linear motif (SLiM)-mediated interactions and footprinting of the binding region with amino acid resolution. Here, we describe the second-generation human disorderome (HD2), an optimized ProP-PD library that tiles all disordered regions of the human proteome and allows the screening of ~1,000,000 overlapping peptides in a single binding assay. We define guidelines for how to process, filter and rank the results and provide PepTools, a toolkit for annotation and analysis of identified hits. We uncovered 2,161 interaction pairs for 35 known SLiM-binding domains and confirmed a subset of 38 interactions by biophysical or cell-based assays. Finally, we show how the amino acid resolution binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the human proteome. The HD2 ProP-PD library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.

7 citations

Posted ContentDOI
26 Jun 2021-bioRxiv
TL;DR: In this paper, the authors aim to discover human linear motifs convergently evolved also in disordered regions of viral proteins, under the hypothesis that these will result in enrichment in functional motif instances.
Abstract: Linear motifs have an integral role in dynamic cell functions including cell signalling, the cell cycle and others. However, due to their small size, low complexity, degenerate nature, and frequent mutations, identifying novel functional motifs is a challenging task. Viral proteins rely extensively on the molecular mimicry of cellular linear motifs for modifying cell signalling and other processes in ways that favour viral infection. This study aims to discover human linear motifs convergently evolved also in disordered regions of viral proteins, under the hypothesis that these will result in enrichment in functional motif instances. We systematically apply computational motif prediction, combined with implementation of several functional and structural filters to the most recent publicly available human-viral and human-human protein interaction network. By limiting the search space to the sequences of viral proteins, we observed an increase in the sensitivity of motif prediction, as well as improved enrichment in known instances compared to the same analysis using only human protein interactions. We identified > 8,400 motif instances at various confidence levels, 105 of which were supported by all functional and structural filters applied. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalogue of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the mechanisms of viral interference with this.

5 citations

Posted ContentDOI
19 Apr 2021-bioRxiv
TL;DR: In this paper, the authors describe a scalable peptide discovery approach covering 229 RNA viruses that provides high resolution information on direct virus-host interactions and identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an {Phi}xFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein.
Abstract: Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, current methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a scalable viral peptide discovery approach covering 229 RNA viruses that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an {Phi}xFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its {Phi}xFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction blocks SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: For example, AlphaFold2 as discussed by the authors generates peptide-protein complex models without requiring multiple sequence alignment information for the peptide partner, and can handle binding-induced conformational changes of the receptor.
Abstract: Highly accurate protein structure predictions by deep neural networks such as AlphaFold2 and RoseTTAFold have tremendous impact on structural biology and beyond. Here, we show that, although these deep learning approaches have originally been developed for the in silico folding of protein monomers, AlphaFold2 also enables quick and accurate modeling of peptide-protein interactions. Our simple implementation of AlphaFold2 generates peptide-protein complex models without requiring multiple sequence alignment information for the peptide partner, and can handle binding-induced conformational changes of the receptor. We explore what AlphaFold2 has memorized and learned, and describe specific examples that highlight differences compared to state-of-the-art peptide docking protocol PIPER-FlexPepDock. These results show that AlphaFold2 holds great promise for providing structural insight into a wide range of peptide-protein complexes, serving as a starting point for the detailed characterization and manipulation of these interactions.

390 citations

Posted ContentDOI
13 Aug 2021-bioRxiv
TL;DR: A simple implementation of AlphaFold2 is presented to model the structure of peptide-protein interactions, enabled by linking the peptide sequence to the protein c-terminus via a poly glycine linker.
Abstract: Highly accurate protein structure predictions by the recently published deep neural networks such as AlphaFold2 and RoseTTAFold are truly impressive achievements, and will have a tremendous impact far beyond structural biology. If peptide-protein binding can be seen as a final complementing step in the folding of a protein monomer, we reasoned that these approaches might be applicable to the modeling of such interactions. We present a simple implementation of AlphaFold2 to model the structure of peptide-protein interactions, enabled by linking the peptide sequence to the protein c-terminus via a poly glycine linker. We show on a large non-redundant set of 162 peptide-protein complexes that peptide-protein interactions can indeed be modeled accurately. Importantly, prediction is fast and works without multiple sequence alignment information for the peptide partner. We compare performance on a smaller, representative set to the state-of-the-art peptide docking protocol PIPER-FlexPepDock, and describe in detail specific examples that highlight advantages of the two approaches, pointing to possible further improvements and insights in the modeling of peptide-protein interactions. Peptide-mediated interactions play important regulatory roles in functional cells. Thus the present advance holds much promise for significant impact, by bringing into reach a wide range of peptide-protein complexes, and providing important starting points for detailed study and manipulation of many specific interactions.

82 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein.
Abstract: Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss computational methods aimed to predict transiently formed local and long-range structure, including methods for integrative structural biology, and how experiments are providing insight into such complexes and may enable more accurate predictions.

28 citations

Journal ArticleDOI
TL;DR: In this article , the authors discuss emerging observations of phase separation by the SARS-CoV-2 nucleocapsid (N) protein and the possible in vivo functions that have been proposed for N-protein phase separation, including viral replication, viral genomic RNA packaging, and modulation of host-cell response to infection.

26 citations