scispace - formally typeset
Search or ask a question
Author

Caroline Fayt

Other affiliations: University of Liège
Bio: Caroline Fayt is an academic researcher from Belgian Institute for Space Aeronomy. The author has contributed to research in topics: Differential optical absorption spectroscopy & SCIAMACHY. The author has an hindex of 26, co-authored 55 publications receiving 2016 citations. Previous affiliations of Caroline Fayt include University of Liège.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the seasonal cycle of HONO as well as its diurnal variation in and in the vicinity of a megacity using ground-based multi-axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements.
Abstract: Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of nitrous acid (HONO) and its precursor NO2 (nitrogen dioxide) as well as aerosols have been performed daily in Beijing city centre (3998° N, 11638° E) from July 2008 to April 2009 and at the suburban site of Xianghe (3975° N, 11696° E) located ~60 km east of Beijing from March 2010 to December 2012 This extensive dataset allowed for the first time the investigation of the seasonal cycle of HONO as well as its diurnal variation in and in the vicinity of a megacity Our study was focused on the HONO and NO2 near-surface concentrations (0–200 m layer) and total vertical column densities (VCDs) and also aerosol optical depths (AODs) and extinction coefficients retrieved by applying the Optimal Estimation Method to the MAX-DOAS observations Monthly averaged HONO near-surface concentrations at local noon display a strong seasonal cycle with a maximum in late fall/winter (~08 and 07 ppb at Beijing and Xianghe, respectively) and a minimum in summer (~01 ppb at Beijing and 003 ppb at Xianghe) The seasonal cycles of HONO and NO2 appear to be highly correlated, with correlation coefficients in the 07–09 and 05–08 ranges at Beijing and Xianghe, respectively The stronger correlation of HONO with NO2 and also with aerosols observed in Beijing suggests possibly larger role of NO2 conversion into HONO in the Beijing city center than at Xianghe The observed diurnal cycle of HONO near-surface concentration shows a maximum in the early morning (about 1 ppb at both sites) likely resulting from night-time accumulation, followed by a decrease to values of about 01–04 ppb around local noon The HONO / NO2 ratio shows a similar pattern with a maximum in the early morning (values up to 008) and a decrease to ~001–002 around local noon The seasonal and diurnal cycles of the HONO near-surface concentration are found to be similar in shape and in relative amplitude to the corresponding cycles of the HONO total VCD and are therefore likely driven mainly by the balance between HONO sources and the photolytic sink, whereas dilution effects appear to play only a minor role The estimation of OH radical production from HONO and O3 photolysis based on retrieved HONO near-surface concentrations and calculated photolysis rates indicate that in the 0–200 m altitude range, HONO is by far the largest source of OH radicals in winter as well as in the early morning at all seasons, while the contribution of O3 dominates in summer from mid-morning until mid-afternoon

169 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-visible sensors.
Abstract: . We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV–visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and MetOp-B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2–O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, and (3) a destriping correction and background normalisation resolved in the across-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 09:30 and 13:30 LT are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15 % when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally, regional trends in H2CO columns are estimated for the 2004–2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features are observed, such as an increase of the columns in India and central–eastern China, and a decrease in the eastern US and Europe. We find that the higher horizontal resolution of OMI combined with a better sampling and a more favourable illumination at midday allow for more significant trend estimates, especially over Europe and North America. Importantly, in some parts of the Amazonian forest, we observe with both time series a significant downward trend in H2CO columns, spatially correlated with areas affected by deforestation.

161 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported on the retrieval of aerosol extinction profiles at four wavelengths from ground-based multi-axis differential absorption spectroscopy (MAXDOAS) measurements performed in Beijing, China.
Abstract: . We report on the retrieval of aerosol extinction profiles at four wavelengths from ground-based multi-axis differential absorption spectroscopy (MAXDOAS) measurements performed in Beijing, China. Measurements were made over a 10-month time period (June 2008 to April 2009) using a newly developed MAXDOAS instrument. A retrieval algorithm, based on an on-line implementation of the radiative transfer code LIDORT and the optimal estimation technique, has been designed to provide near real time information on aerosol extinction vertical profiles. The algorithm was applied to O4 measurements at four wavelengths (360, 477, 577, and 630 nm). The total aerosol optical depths (AODs) calculated from the retrieved profiles exhibit higher values in spring and summer and lower values in autumn and winter. Comparison of the retrieved total AODs with values from a co-located CIMEL sunphotometer revealed a good correlation. The best results are obtained for the UV region with a correlation coefficient (R) of 0.91 and a slope of the linear regression fit of 1.1. At the longest wavelength, R drops down to 0.67 and the slope increases to 1.5. The results confirm that good quality O4 slant column measurements are essential for the success of the retrievals. A method is presented to determine a correction factor to account for systematic errors. It is demonstrated that the algorithm is capable of reliably retrieving aerosol extinction profiles for a wide range of atmospheric conditions (total AODs at 360 nm ranging from about 0.1 to 3). The results open up new perspectives for the extension of the algorithm for the near real time retrieval of trace gas vertical profiles.

158 citations

01 Dec 2012
TL;DR: In this paper, the seasonal and diurnal cycles of the HONO near-surface concentration are found to be similar in shape and in relative amplitude to the corresponding cycles of HONNO total vertical column densities and are therefore likely driven mainly by the balance between NH sources and the photolytic sink, whereas dilution effects appear to play only a minor role.
Abstract: Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of nitrous acid (HONO) and its precursor NO2 (nitrogen dioxide) as well as aerosols have been performed daily in Beijing city centre (39.98° N, 116.38° E) from July 2008 to April 2009 and at the suburban site of Xianghe (39.75° N, 116.96° E) located ~60 km east of Beijing from March 2010 to December 2012. This extensive dataset allowed for the first time the investigation of the seasonal cycle of HONO as well as its diurnal variation in and in the vicinity of a megacity. Our study was focused on the HONO and NO2 near-surface concentrations (0–200 m layer) and total vertical column densities (VCDs) and also aerosol optical depths (AODs) and extinction coefficients retrieved by applying the Optimal Estimation Method to the MAX-DOAS observations. Monthly averaged HONO near-surface concentrations at local noon display a strong seasonal cycle with a maximum in late fall/winter (~0.8 and 0.7 ppb at Beijing and Xianghe, respectively) and a minimum in summer (~0.1 ppb at Beijing and 0.03 ppb at Xianghe). The seasonal cycles of HONO and NO2 appear to be highly correlated, with correlation coefficients in the 0.7–0.9 and 0.5–0.8 ranges at Beijing and Xianghe, respectively. The stronger correlation of HONO with NO2 and also with aerosols observed in Beijing suggests possibly larger role of NO2 conversion into HONO in the Beijing city center than at Xianghe. The observed diurnal cycle of HONO near-surface concentration shows a maximum in the early morning (about 1 ppb at both sites) likely resulting from night-time accumulation, followed by a decrease to values of about 0.1–0.4 ppb around local noon. The HONO / NO2 ratio shows a similar pattern with a maximum in the early morning (values up to 0.08) and a decrease to ~0.01–0.02 around local noon. The seasonal and diurnal cycles of the HONO near-surface concentration are found to be similar in shape and in relative amplitude to the corresponding cycles of the HONO total VCD and are therefore likely driven mainly by the balance between HONO sources and the photolytic sink, whereas dilution effects appear to play only a minor role. The estimation of OH radical production from HONO and O3 photolysis based on retrieved HONO near-surface concentrations and calculated photolysis rates indicate that in the 0–200 m altitude range, HONO is by far the largest source of OH radicals in winter as well as in the early morning at all seasons, while the contribution of O3 dominates in summer from mid-morning until mid-afternoon.

146 citations

Journal ArticleDOI
TL;DR: The Global Ozone Monitoring Instrument (GOME) was launched on European Space Agency's ERS-2 platform in April 1995 as mentioned in this paper, and the 10-year GOME level 1 data record was reprocessed.
Abstract: The Global Ozone Monitoring Instrument (GOME) was launched on European Space Agency's ERS-2 platform in April 1995. The GOME data processor (GDP) operational retrieval algorithm has generated total ozone columns since July 1995. In 2004 the GDP system was given a major upgrade to version 4.0, a new validation was performed, and the 10-year GOME level 1 data record was reprocessed. In two papers, we describe the GDP 4.0 retrieval algorithm and present an error budget and sensitivity analysis (paper 1) and validation of the GDP total ozone product and the overall accuracy of the entire GOME ozone record (paper 2). GDP 4.0 uses an optimized differential optical absorption spectroscopy (DOAS) algorithm, with air mass factor (AMF) conversions calculated using the radiative transfer code linearized discrete ordinate radiative transfer (LIDORT). AMF computation is based on the TOMS version 8 ozone profile climatology, classified by total column, and AMFs are adjusted iteratively to reflect the DOAS slant column result. GDP 4.0 has improved wavelength calibration and reference spectra and includes a new molecular Ring correction to deal with distortion of ozone absorption features due to inelastic rotational Raman scattering effects. Preprocessing for cloud parameter estimation in GDP 4.0 is done using two new cloud correction algorithms: OCRA and ROCINN. For clear and cloudy scenes the precision of the ozone column product is better than 2.4 and 3.3%, respectively, for solar zenith angles up to 80°. Comparisons with ground-based data are generally at the 1-1.5% level or better for all regions outside the poles.

131 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A copy of the Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?".
Abstract: A copy of Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?" It said: "… Young friends, you are certainly very concerned about this problem'. So, we would like you to meet the young women workers Meng Xiaoyu and Meng Yamei and the older cadre Miss Feng. They are the three leading characters in the short story ‘The Place of Love.’ Through the description of the love lives of these three, the story induces us to think deeply about two questions that merit further examination.

1,528 citations

Journal ArticleDOI
TL;DR: This review summarizes the main findings from published papers on the characteristics and sources and processes of ozone and ozone precursors in the boundary layer of urban and rural areas of China, including concentration levels, seasonal variation, meteorology conducive to photochemistry and pollution transport, key production and loss processes, ozone dependence on nitrogen oxides and volatile organic compounds, and the effects of ozone on crops and human health.

952 citations

Journal ArticleDOI
TL;DR: A review of the state of scientific understanding in relation to global and regional air quality is outlined in this article, in terms of emissions, processing and transport of trace gases and aerosols.

760 citations

Journal ArticleDOI
TL;DR: In the polar regions, unique photochemistry converts inert halide salt ions (e.g. Br−) into reactive halogen species that deplete ozone in the boundary layer to near zero levels as discussed by the authors.
Abstract: . During springtime in the polar regions, unique photochemistry converts inert halide salt ions (e.g. Br−) into reactive halogen species (e.g. Br atoms and BrO) that deplete ozone in the boundary layer to near zero levels. Since their discovery in the late 1980s, research on ozone depletion events (ODEs) has made great advances; however many key processes remain poorly understood. In this article we review the history, chemistry, dependence on environmental conditions, and impacts of ODEs. This research has shown the central role of bromine photochemistry, but how salts are transported from the ocean and are oxidized to become reactive halogen species in the air is still not fully understood. Halogens other than bromine (chlorine and iodine) are also activated through incompletely understood mechanisms that are probably coupled to bromine chemistry. The main consequence of halogen activation is chemical destruction of ozone, which removes the primary precursor of atmospheric oxidation, and generation of reactive halogen atoms/oxides that become the primary oxidizing species. The different reactivity of halogens as compared to OH and ozone has broad impacts on atmospheric chemistry, including near complete removal and deposition of mercury, alteration of oxidation fates for organic gases, and export of bromine into the free troposphere. Recent changes in the climate of the Arctic and state of the Arctic sea ice cover are likely to have strong effects on halogen activation and ODEs; however, more research is needed to make meaningful predictions of these changes.

581 citations

Journal ArticleDOI
TL;DR: In this paper, an improved version of the DOMINO algorithm, DOMINO v2.0, was proposed for OMI based on better air mass factors (AMFs) and a correction for across-track stripes resulting from calibration errors in the OMI backscattered reflectances.
Abstract: . We present an improved tropospheric nitrogen dioxide column retrieval algorithm (DOMINO v2.0) for OMI based on better air mass factors (AMFs) and a correction for across-track stripes resulting from calibration errors in the OMI backscattered reflectances. Since October 2004, NO2 retrievals from the Ozone Monitoring Instrument (OMI), a UV/Vis nadir spectrometer onboard NASA's EOS-Aura satellite, have been used with success in several scientific studies focusing on air quality monitoring, detection of trends, and NOx emission estimates. Dedicated evaluations of previous DOMINO tropospheric NO2 retrievals indicated their good quality, but also suggested that the tropospheric columns were susceptible to high biases (by 0–40%), probably because of errors in the air mass factor calculations. Here we update the DOMINO air mass factor approach. We calculate a new look-up table (LUT) for altitude-dependent AMFs based on more realistic atmospheric profile parameters, and include more surface albedo and surface pressure reference points than before. We improve the sampling of the TM4 model, resulting in a priori NO2 profiles that are better mixed throughout the boundary layer. We evaluate the NO2 profiles simulated with the improved TM4 sampling as used in the AMF calculations and show that they are highly consistent with in situ NO2 measurements from aircraft during the INTEX-A and INTEX-B campaigns in 2004 and 2006. Our air mass factor calculations are further updated by the implementation of a high-resolution terrain height and a high-resolution surface albedo climatology based on OMI measurements. Together with a correction for across-track stripes, the overall impact of the improved terrain height and albedo descriptions is modest (

538 citations