scispace - formally typeset
Search or ask a question
Author

Caroline Lange

Bio: Caroline Lange is an academic researcher from German Aerospace Center. The author has contributed to research in topics: Spacecraft & Solar sail. The author has an hindex of 14, co-authored 67 publications receiving 733 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a mobile asteroid surface SCOuT (MASCOT) was developed by the German Aerospace Centre (DLR) in collaboration with the Centre National d'Etudes Spatiales (CNES).
Abstract: On December 3rd, 2014, the Japanese Space Agency (JAXA) launched successfully the Hayabusa2 (HY2) spacecraft to its journey to Near Earth asteroid (162173) Ryugu. Aboard this spacecraft is a compact landing package, MASCOT (Mobile Asteroid surface SCOuT), which was developed by the German Aerospace Centre (DLR) in collaboration with the Centre National d’Etudes Spatiales (CNES). Similar to the famous predecessor mission Hayabusa, Hayabusa2, will also study an asteroid and return samples to Earth. This time, however, the target is a C-type asteroid which is considered to be more primitive than (25143) Itokawa and provide insight into an even earlier stage of our Solar System. Upon arrival at asteroid Ryugu in 2018, MASCOT will be released from the HY2 spacecraft and gently descend by free fall from an altitude of about 100 m to the surface of the asteroid. After a few bounces, the lander will come to rest at the surface and perform its scientific investigations of the surface structure and mineralogical composition, the thermal behaviour and the magnetic properties by operating its four scientific instruments. Those include an IR imaging spectrometer (MicrOmega, IAS Paris), a camera (MASCAM, DLR Berlin), a radiometer (MARA, DLR Berlin) and a magnetometer (MASMAG, TU Braunschweig). In order to allow optimized payload operations the thermal design of MASCOT is required to cope with the contrasting requirements of the 4-year cruise in cold environment versus the hot conditions on the surface of the asteroid. Operations up to 2 asteroid days (∼16 hours) based on a primary battery are currently envisaged. A mobility mechanism allows locomotion on the surface. The mechanism is supported by an attitude and motion sensing system and an intelligent autonomy manager, which is implemented in the onboard software that enables MASCOT to operate fully independently when ground intervention is not available.

133 citations

Journal ArticleDOI
23 Aug 2019-Science
TL;DR: Images from the Mobile Asteroid Surface Scout lander show that rocks on asteroid Ryugu are similar to carbonaceous chondrite meteorites, and close-up images of a rock reveal a dark matrix with small, bright, spectrally different inclusions, implying that it did not experience extensive aqueous alteration.
Abstract: The near-Earth asteroid (162173) Ryugu is a 900-m-diameter dark object expected to contain primordial material from the solar nebula. The Mobile Asteroid Surface Scout (MASCOT) landed on Ryugu's surface on 3 October 2018. We present images from the MASCOT camera (MASCam) taken during the descent and while on the surface. The surface is covered by decimeter- to meter-sized rocks, with no deposits of fine-grained material. Rocks appear either bright, with smooth faces and sharp edges, or dark, with a cauliflower-like, crumbly surface. Close-up images of a rock of the latter type reveal a dark matrix with small, bright, spectrally different inclusions, implying that it did not experience extensive aqueous alteration. The inclusions appear similar to those in carbonaceous chondrite meteorites.

101 citations

Journal ArticleDOI
TL;DR: The Biology and Mars Experiment (BIOMEX) as mentioned in this paper is an interdisciplinary and international space research project selected by ESA to measure to what extent biomolecules, such as pigments and cellular components, are resistant to and able to maintain their stability under space and Mars-like conditions.

78 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the requirements and model dielectric properties of asteroids to outline a possible instrument suite, and highlight the capabilities of radar instrumentation to achieve these observations.

75 citations

Journal ArticleDOI
TL;DR: The first dedicated comet Lander is Philae, an element of ESA's Rosetta mission to comet 67/P Churyumov-Gerasimenko, currently foreseen for November 2014.

38 citations


Cited by
More filters
01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
TL;DR: The current state of knowledge for the biospace in which life operates on Earth is reviewed and discussed in a planetary context, highlighting knowledge gaps and areas of opportunity.
Abstract: Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.

298 citations

Journal ArticleDOI
TL;DR: The Hayabusa2 mission as mentioned in this paper was the first mission to explore a C-type near-Earth asteroid (162173) Ryugu (1999 JU3) to observe and explore the 900 m-sized object, and return samples collected from the surface layer.
Abstract: The Hayabusa2 mission journeys to C-type near-Earth asteroid (162173) Ryugu (1999 JU3) to observe and explore the 900 m-sized object, as well as return samples collected from the surface layer. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on December 3, 2014 by an H-IIA launch vehicle and performed an Earth swing-by on December 3, 2015 to set it on a course toward its target Ryugu. Hayabusa2 aims at increasing our knowledge of the early history and transfer processes of the solar system through deciphering memories recorded on Ryugu, especially about the origin of water and organic materials transferred to the Earth’s region. Hayabusa2 carries four remote-sensing instruments, a telescopic optical camera with seven colors (ONC-T), a laser altimeter (LIDAR), a near-infrared spectrometer covering the 3-μm absorption band (NIRS3), and a thermal infrared imager (TIR). It also has three small rovers of MINERVA-II and a small lander MASCOT (Mobile Asteroid Surface Scout) developed by German Aerospace Center (DLR) in cooperation with French space agency CNES. MASCOT has a wide angle imager (MasCam), a 6-band thermal radiator (MARA), a 3-axis magnetometer (MasMag), and a hyperspectral infrared microscope (MicrOmega). Further, Hayabusa2 has a sampling device (SMP), and impact experiment devices which consist of a small carry-on impactor (SCI) and a deployable camera (DCAM3). The interdisciplinary research using the data from these onboard and lander’s instruments and the analyses of returned samples are the key to success of the mission.

210 citations

01 Jul 2014
TL;DR: In this paper, the authors consider 11 dynamical asteroids losing mass, in nine of which the ejected material is spatially resolved, and address mechanisms for producing mass loss including rotational instability, impact ejection, electrostatic repulsion, radiation pressure sweeping, dehydration stresses, and thermal fracture, in addition to the sublimation of ice.
Abstract: Some asteroids eject dust, unexpectedly producing transient, comet-like comae and tails. First ascribed to the sublimation of near-surface water ice, mass-losing asteroids (also called main-belt comets) can in fact be driven by a surprising diversity of mechanisms. In this paper, we consider 11 dynamical asteroids losing mass, in nine of which the ejected material is spatially resolved. We address mechanisms for producing mass loss including rotational instability, impact ejection, electrostatic repulsion, radiation pressure sweeping, dehydration stresses, and thermal fracture, in addition to the sublimation of ice. In two objects (133P and 238P) the repetitive nature of the observed activity leaves ice sublimation as the only reasonable explanation, while in a third ((596) Scheila), a recent impact is the cause. Another impact may account for activity in P/2010 A2, but this tiny object can also be explained as having shed mass after reaching rotational instability. Mass loss from (3200) Phaethon is probably due to cracking or dehydration at extreme (~1000?K) perihelion temperatures, perhaps aided by radiation pressure sweeping. For the other bodies, the mass-loss mechanisms remain unidentified, pending the acquisition of more and better data. While the active asteroid sample size remains small, the evidence for an astonishing diversity of mass-loss processes in these bodies is clear.

174 citations