scispace - formally typeset
Search or ask a question
Author

Caroline S. Awmack

Bio: Caroline S. Awmack is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Aphid & Population. The author has an hindex of 15, co-authored 21 publications receiving 5334 citations. Previous affiliations of Caroline S. Awmack include Imperial College London & Rothamsted Research.

Papers
More filters
Journal ArticleDOI
TL;DR: Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.
Abstract: This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects of CO2 or UVB. Direct impacts of precipitation have been largely neglected in current research on climate change. Temperature directly affects development, survival, range and abundance. Species with a large geographical range will tend to be less affected. The main effect of temperature in temperate regions is to influence winter survival; at more northerly latitudes, higher temperatures extend the summer season, increasing the available thermal budget for growth and reproduction. Photoperiod is the dominant cue for the seasonal synchrony of temperate insects, but their thermal requirements may differ at different times of year. Interactions between photoperiod and temperature determine phenology; the two factors do not necessarily operate in tandem. Insect herbivores show a number of distinct life-history strategies to exploit plants with different growth forms and strategies, which will be differentially affected by climate warming. There are still many challenges facing biologists in predicting and monitoring the impacts of climate change. Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.

2,114 citations

Journal ArticleDOI
TL;DR: It is concluded that host plant quality affects the fecundity of herbivorous insects at both the individual and the population scale.
Abstract: Host plant quality is a key determinant of the fecundity of herbivorous insects. Components of host plant quality (such as carbon, nitrogen, and defensive metabolites) directly affect potential and achieved herbivore fecundity. The responses of insect herbivores to changes in host plant quality vary within and between feeding guilds. Host plant quality also affects insect reproductive strategies: Egg size and quality, the allocation of resources to eggs, and the choice of oviposition sites may all be influenced by plant quality, as may egg or embryo resorption on poor-quality hosts. Many insect herbivores change the quality of their host plants, affecting both inter- and intraspecific interactions. Higher-trophic level interactions, such as the performance of predators and parasitoids, may also be affected by host plant quality. We conclude that host plant quality affects the fecundity of herbivorous insects at both the individual and the population scale.

1,962 citations

Journal ArticleDOI
TL;DR: O 3 at 1·5 × ambient completely offset the growth enhancement by CO 2 , both for O 3 -sensitive and O 2 -tolerant clones and across various trophic levels, and implications for carbon sequestration, plantations to reduce excess CO 2, and global models of forest productivity and climate change are presented.
Abstract: Summary 1. The impacts of elevated atmospheric CO 2 and/or O 3 have been examined over 4 years using an open-air exposure system in an aggrading northern temperate forest containing two different functional groups (the indeterminate, pioneer, O 3 -sensitive species Trembling Aspen, Populus tremuloides and Paper Birch, Betula papyrifera , and the determinate, late successional, O 3 -tolerant species Sugar Maple, Acer saccharum ). 2. The responses to these interacting greenhouse gases have been remarkably consistent in pure Aspen stands and in mixed Aspen/Birch and Aspen/Maple stands, from leaf to ecosystem level, for O 3 -tolerant as well as O 3 -sensitive genotypes and across various trophic levels. These two gases act in opposing ways, and even at low concentrations (1·5 × ambient, with ambient averaging 34‐36 nL L − 1 during the summer daylight hours), O 3 offsets or moderates the responses induced by elevated CO 2 . 3. After 3 years of exposure to 560 µ mol mol − 1 CO 2 , the above-ground volume of Aspen stands was 40% above those grown at ambient CO 2 , and there was no indication of a diminishing growth trend. In contrast, O 3 at 1·5 × ambient completely offset the growth enhancement by CO 2 , both for O 3 -sensitive and O 3 -tolerant clones. Implications of this finding for carbon sequestration, plantations to reduce excess CO 2 , and global models of forest productivity and climate change are presented.

287 citations

Journal ArticleDOI
28 Nov 2002-Nature
TL;DR: Evidence is presented from the most widely distributed North American tree species, Populus tremuloides, showing that CO2 and O3, singly and in combination, affected productivity, physical and chemical leaf defences and, because of changes in plant quality, insect and disease populations, feedbacks to plant growth are likely.
Abstract: Human activity causes increasing background concentrations of the greenhouse gases C02 and O3. Increased levels of C02 can be found in all terrestrial ecosystems. Damaging O3 concentrations currently occur over 29% of the world's temperate and subpolar forests but are predicted to affect fully 60% by 2100 (ref. 3). Although individual effects of C02 and O3, on vegetation have been widely investigated, very little is known about their interaction, and long-term studies on mature trees and higher trophic levels are extremely rare. Here we present evidence from the most widely distributed North American tree species, Populus tremuloides, showing that C02 and O3, singly and in combination, affected productivity, physical and chemical leaf defences and, because of changes in plant quality, insect and disease populations. Our data show that feedbacks to plant growth from changes induced by C02 and O3 in plant quality and pest performance are likely. Assessments of global change effects on forest ecosystems must therefore consider the interacting effects of C02 and O3 on plant performance, as well as the implications of increased pest activity.

273 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations

Journal ArticleDOI
22 Sep 2005-Nature
TL;DR: An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.
Abstract: Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003.We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg Cyr21) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.

3,408 citations

Journal ArticleDOI
TL;DR: The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO(2)]; but even with FACE there are limitations, which are discussed.
Abstract: Contents Summary 1 I. What is FACE? 2 II. Materials and methods 2 III. Photosynthetic carbon uptake 3 IV. Acclimation of photosynthesis 6 V. Growth, above-ground production and yield 8 VI. So, what have we learned? 10 Acknowledgements 11 References 11 Appendix 1. References included in the database for meta-analyses 14 Appendix 2. Results of the meta-analysis of FACE effects 18 Summary Free-air CO2 enrichment (FACE) experiments allow study of the effects of elevated [CO2] on plants and ecosystems grown under natural conditions without enclosure. Data from 120 primary, peer-reviewed articles describing physiology and production in the 12 large-scale FACE experiments (475–600 ppm) were collected and summarized using meta-analytic techniques. The results confirm some results from previous chamber experiments: light-saturated carbon uptake, diurnal C assimilation, growth and above-ground production increased, while specific leaf area and stomatal conductance decreased in elevated [CO2]. There were differences in FACE. Trees were more responsive than herbaceous species to elevated [CO2]. Grain crop yields increased far less than anticipated from prior enclosure studies. The broad direction of change in photosynthesis and production in elevated [CO2] may be similar in FACE and enclosure studies, but there are major quantitative differences: trees were more responsive than other functional types; C4 species showed little response; and the reduction in plant nitrogen was small and largely accounted for by decreased Rubisco. The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO2]; but even with FACE there are limitations, which are also discussed.

3,140 citations

Journal ArticleDOI
TL;DR: It is concluded that host plant quality affects the fecundity of herbivorous insects at both the individual and the population scale.
Abstract: Host plant quality is a key determinant of the fecundity of herbivorous insects. Components of host plant quality (such as carbon, nitrogen, and defensive metabolites) directly affect potential and achieved herbivore fecundity. The responses of insect herbivores to changes in host plant quality vary within and between feeding guilds. Host plant quality also affects insect reproductive strategies: Egg size and quality, the allocation of resources to eggs, and the choice of oviposition sites may all be influenced by plant quality, as may egg or embryo resorption on poor-quality hosts. Many insect herbivores change the quality of their host plants, affecting both inter- and intraspecific interactions. Higher-trophic level interactions, such as the performance of predators and parasitoids, may also be affected by host plant quality. We conclude that host plant quality affects the fecundity of herbivorous insects at both the individual and the population scale.

1,962 citations