scispace - formally typeset
Search or ask a question
Author

Caroline Smet-Nocca

Bio: Caroline Smet-Nocca is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Tau protein & Phosphorylation. The author has an hindex of 21, co-authored 36 publications receiving 1244 citations. Previous affiliations of Caroline Smet-Nocca include University of Lille Nord de France & university of lille.

Papers
More filters
Journal ArticleDOI
TL;DR: Since destabilization of MTs after dissociation of Tau could contribute to toxicity in neurodegenerative diseases, a molecular understanding of this interaction and its regulation is essential.
Abstract: Microtubules (MTs) play a fundamental role in many vital processes such as cell division and neuronal activity. They are key structural and functional elements in axons, supporting neurite differentiation and growth, as well as transporting motor proteins along the axons, which use MTs as support tracks. Tau is a stabilizing MT associated protein, whose functions are mainly regulated by phosphorylation. A disruption of the MT network, which might be caused by Tau loss of function, is observed in a group of related diseases called tauopathies, which includes Alzheimer's disease (AD). Tau is found hyperphosphorylated in AD, which might account for its loss of MT stabilizing capacity. Since destabilization of MTs after dissociation of Tau could contribute to toxicity in neurodegenerative diseases, a molecular understanding of this interaction and its regulation is essential.

235 citations

Journal ArticleDOI
TL;DR: The previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation are delineated to define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.
Abstract: Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

153 citations

Journal ArticleDOI
TL;DR: In vitro kinase assays combined with NMR spectroscopy are used to generate well-characterized phosphorylated Tau samples and it is shown that aggregation of the samples correlates with destabilization of the turn-like structure defined by phosphorylation of Ser202/Thr205.
Abstract: Determining the functional relationship between Tau phosphorylation and aggregation has proven a challenge owing to the multiple potential phosphorylation sites and their clustering in the Tau sequence. We use here in vitro kinase assays combined with NMR spectroscopy as an analytical tool to generate well-characterized phosphorylated Tau samples and show that the combined phosphorylation at the Ser202/Thr205/Ser208 sites, together with absence of phosphorylation at the Ser262 site, yields a Tau sample that readily forms fibers, as observed by thioflavin T fluorescence and electron microscopy. On the basis of conformational analysis of synthetic phosphorylated peptides, we show that aggregation of the samples correlates with destabilization of the turn-like structure defined by phosphorylation of Ser202/Thr205.

149 citations

Journal ArticleDOI
TL;DR: Three O-GlcNAc sites are identified by screening a library of small peptides sampling the proline-rich, the microtubule-associated repeats and the carboxy-terminal domains of Tau as potential substrates for the O-β-N-acetylglucosaminyltransferase (OGT).
Abstract: Phosphorylation of the microtubule-associated Tau protein plays a major role in the regulation of its activity of tubulin polymerization and/or stabilization of microtubule assembly. A dysregulation of the phosphorylation/dephosphorylation balance leading to the hyperphosphorylation of Tau proteins in neurons is thought to favor their aggregation into insoluble filaments. This in turn might underlie neuronal death as encountered in many neurodegenerative disorders, including Alzheimer's disease. Another post-translational modification, the O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), controls the phosphorylation state of Tau, although the precise mechanism is not known. Moreover, analytical difficulties have hampered the precise localization of the O-GlcNAc sites on Tau, except for the S400 site that was very recently identified on the basis of ETD-FT-MS. Here, we identify three O-GlcNAc sites by screening a library of small peptides sampling the proline-rich, the microtubule-associated repeats and the carboxy-terminal domains of Tau as potential substrates for the O-β-N-acetylglucosaminyltransferase (OGT). The in vitro activity of the nucleocytoplasmic OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Using phosphorylated peptides, we establish the relationship between phosphate and O-GlcNAc incorporation at these sites. Phosphorylation of neighboring residues S396 and S404 was found to decrease significantly S400 O-GlcNAcylation. Reciprocally, S400 O-GlcNAcylation reduces S404 phosphorylation by the CDK2/cyclinA3 kinase and interrupts the GSK3β-mediated sequential phosphorylation process.

105 citations

Journal ArticleDOI
23 Dec 2013-PLOS ONE
TL;DR: It is concluded that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau.
Abstract: The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.

78 citations


Cited by
More filters
13 Jul 2017
TL;DR: It is demonstrated that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases.
Abstract: Alzheimer’s disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4–3.5 A resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer’s disease. Filament cores are made of two identical protofilaments comprising residues 306–378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. High-resolution structures of tau filaments shed light on the ultrastructure of neurofibrillary lesions in Alzheimer’s disease. Alzheimer's disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. The lesions are made of paired helical and straight tau filaments (PHFs and SFs, respectively). Different tau filaments characterize other neurodegenerative diseases, suggesting that molecular conformers of aggregated tau underlie human tauopathies. No high-resolution structures of tau filaments are currently available. Here, Sjors Scheres and colleagues present cryo-electron microscopy (cryo-EM) maps at 3.5 A resolution and corresponding atomic models of PHFs and SFs from the brain of an individual with Alzheimer's disease. Their results show that cryo-EM enables atomic characterization of amyloid filaments from patient-derived material and could be used to study a range of neurodegenerative diseases.

652 citations

Journal ArticleDOI
TL;DR: It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease, and enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Abstract: Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.

613 citations

Journal ArticleDOI
TL;DR: Main approaches to the characterization of proteins and protein complexes using SAXS are reviewed, and main tools for the analysis of proteins in solution are presented, and the impact that these tools have made in modern structural biology is discussed.

517 citations

Journal ArticleDOI
TL;DR: Using in vitro biochemical aggregation studies, it is found that O-GlcNAc modification, on its own, hinders tau oligomerization and inhibits thermally induced aggregation of an unrelated protein, TAK-1 binding protein, suggesting that a basic biochemical function of O- GladiatorNAc may be to prevent protein aggregation.
Abstract: Oligomerization of tau is a key process contributing to the progressive death of neurons in Alzheimer's disease. Tau is modified by O-linked N-acetylglucosamine (O-GlcNAc), and O-GlcNAc can influence tau phosphorylation in certain cases. We therefore speculated that increasing tau O-GlcNAc could be a strategy to hinder pathological tau-induced neurodegeneration. Here we found that treatment of hemizygous JNPL3 tau transgenic mice with an O-GlcNAcase inhibitor increased tau O-GlcNAc, hindered formation of tau aggregates and decreased neuronal cell loss. Notably, increases in tau O-GlcNAc did not alter tau phosphorylation in vivo. Using in vitro biochemical aggregation studies, we found that O-GlcNAc modification, on its own, hinders tau oligomerization. O-GlcNAc also inhibits thermally induced aggregation of an unrelated protein, TAK-1 binding protein, suggesting that a basic biochemical function of O-GlcNAc may be to prevent protein aggregation. These results also suggest O-GlcNAcase as a potential therapeutic target that could hinder progression of Alzheimer's disease.

479 citations

Journal ArticleDOI
05 Mar 2015-Nature
TL;DR: Stabilization of a phosphorylation-induced fold is highlighted as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.
Abstract: Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLΦ motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded β-domain that sequesters the helical YXXXXLΦ motif into a partly buried β-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.

449 citations