scispace - formally typeset
Search or ask a question
Author

Carolyn M. Klinge

Bio: Carolyn M. Klinge is an academic researcher from University of Louisville. The author has contributed to research in topics: Estrogen receptor & Estrogen receptor alpha. The author has an hindex of 46, co-authored 153 publications receiving 8738 citations. Previous affiliations of Carolyn M. Klinge include University of Rochester & University of Nebraska Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: Review of data from the own laboratory and those in the literature indicate that ERalpha binding affinity does not relate linearly with E(2)-induced transcriptional activation, and it is suggested that the reasons for this discord include cellular amounts of coactivators and adaptor proteins that play roles both in ER binding and transcriptionalactivation; phosphorylation of ER and other proteins involved in transcriptional activated; and sequence-specific and protein-induced alterations in chromatin architecture.
Abstract: The estrogen receptor (ER) is a ligand-activated enhancer protein that is a member of the steroid/nuclear receptor superfamily. Two genes encode mammalian ER: ERα and ERβ. ER binds to specific DNA sequences called estrogen response elements (EREs) with high affinity and transactivates gene expression in response to estradiol (E2). The purpose of this review is to summarize how natural and synthetic variations in the ERE sequence impact the affinity of ER–ERE binding and E2-induced transcriptional activity. Surprisingly, although the consensus ERE sequence was delineated in 1989, there are only seven natural EREs for which both ERα binding affinity and transcriptional activation have been examined. Even less information is available regarding how variations in ERE sequence impact ERβ binding and transcriptional activity. Review of data from our own laboratory and those in the literature indicate that ERα binding affinity does not relate linearly with E2-induced transcriptional activation. We suggest that the reasons for this discord include cellular amounts of coactivators and adaptor proteins that play roles both in ER binding and transcriptional activation; phosphorylation of ER and other proteins involved in transcriptional activation; and sequence-specific and protein-induced alterations in chromatin architecture.

1,010 citations

Journal ArticleDOI
17 Jul 2008-Oncogene
TL;DR: The demonstration that miR-21 promotes cell transformation supports the concept that mir-21 functions as an oncogene by a mechanism that involves translational repression of the tumor suppressor Pdcd4.
Abstract: MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively control expression of target genes in animals and plants. The microRNA-21 gene (mir-21) has been identified as the only miRNA commonly overexpressed in solid tumors of the lung, breast, stomach, prostate, colon, brain, head and neck, esophagus and pancreas. We initiated a screen to identify miR-21 target genes using a reporter assay and identified a potential miR-21 target in the 3'-UTR of the programmed cell death 4 (PDCD4) gene. We cloned the full-length 3'-UTR of human PDCD4 downstream of a reporter and found that mir-21 downregulated, whereas a modified antisense RNA to miR-21 upregulated reporter activity. Moreover, deletion of the putative miR-21-binding site (miRNA regulatory element, MRE) from the 3'-UTR of PDCD4, or mutations in the MRE abolished the ability of miR-21 to inhibit reporter activity, indicating that this MRE is a critical regulatory region. Western blotting showed that Pdcd4 protein levels were reduced by miR-21 in human and mouse cells, whereas quantitative real-time PCR revealed little difference at the mRNA level, suggesting translational regulation. Finally, overexpression of mir-21 in MCF-7 human breast cancer cells and mouse epidermal JB6 cells promoted soft agar colony formation by downregulating Pdcd4 protein levels. The demonstration that miR-21 promotes cell transformation supports the concept that mir-21 functions as an oncogene by a mechanism that involves translational repression of the tumor suppressor Pdcd4.

689 citations

Journal ArticleDOI
TL;DR: It is reported that resveratrol binds ERb and ERa with comparable affinity, but with 7,000-fold lower affinity than estradiol (E2), which indicates that those tissues that uniquely express ERb or that express higher levels of ERb than ERa may be more sensitive to resver atrol’s estrogen agonist activity.
Abstract: Epidemiological evidence indicates that phytoestrogens inhibit cancer formation and growth, reduce cholesterol levels, and show benefits in treating osteoporosis. At least some of these activities are mediated through the interaction of phytoestrogens with estrogen receptors a and b (ERa and ERb). Resveratrol, trans-3,5,49-trihydroxystilbene, is a phytoestrogen in grapes that is present in red wine. Resveratrol was shown to bind ER in cytosolic extracts from MCF-7 and rat uteri. However, the contribution of ERa vs. ERb in this binding is unknown. Here we report that resveratrol binds ERb and ERa with comparable affinity, but with 7,000-fold lower affinity than estradiol (E2). Thus, resveratrol differs from other phytoestrogens that bind ERb with higher affinity than ERa. Resveratrol acts as an estrogen agonist and stimulates ERE-driven reporter gene activity in CHO-K1 cells expressing either ERa or ERb. The estrogen agonist activity of resveratrol depends on the ERE sequence and the type of ER. Resveratrol-liganded ERb has higher transcriptional activity than E2-liganded ERb at a single palindromic ERE. This indicates that those tissues that uniquely express ERb or that express higher levels of ERb than ERa may be more sensitive to resveratrol’s estrogen agonist activity. For the natural, imperfect EREs from the human c-fos, pS2, and progesterone receptor (PR) genes, resveratrol shows activity comparable to that induced by E2. We report that resveratrol exhibits E2 antagonist activity for ERa with select EREs. In contrast, resveratrol shows no E2 antagonist activity with ERb. These data indicate that resveratrol differentially affects the transcriptional activity of ERa and ERb in an ERE sequence-dependent manner. (Endocrinology 141: 3657‐3667, 2000)

521 citations

Journal ArticleDOI
TL;DR: These results are the first to demonstrate that E2 represses the expression of an oncogenic miRNA, miR-21, by activating estrogen receptor in MCF-7 cells.
Abstract: Select changes in microRNA (miRNA) expression correlate with estrogen receptor α (ERα) expression in breast tumors. miR-21 is higher in ERα positive than negative tumors, but no one has examined how estradiol (E2) regulates miR-21 in breast cancer cells. Here we report that E2 inhibits miR-21 expression in MCF-7 human breast cancer cells. The E2-induced reduction in miR-21 was inhibited by 4-hydroxytamoxifen (4-OHT), ICI 182 780 (Faslodex), and siRNA ERα indicating that the suppression is ERα-mediated. ERα and ERβ agonists PPT and DPN inhibited and 4-OHT increased miR-21 expression. E2 increased luciferase activity from reporters containing the miR-21 recognition elements from the 3′-UTRs of miR-21 target genes, corroborating that E2 represses miR-21 expression resulting in a loss of target gene suppression. The E2-mediated decrease in miR-21 correlated with increased protein expression of endogenous miR-21-targets Pdcd4, PTEN and Bcl-2. siRNA knockdown of ERα blocked the E2-induced increase in Pdcd4, PTEN and Bcl-2. Transfection of MCF-7 cells with antisense (AS) to miR-21 mimicked the E2-induced increase in Pdcd4, PTEN and Bcl-2. These results are the first to demonstrate that E2 represses the expression of an oncogenic miRNA, miR-21, by activating estrogen receptor in MCF-7 cells.

369 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
24 Jun 2010-Nature
TL;DR: It is found that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role, and this analysis extended to other cancer-related genes that possess pseudogenes, and revealed a non-coding function for mRNAs.
Abstract: The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.

2,107 citations

Journal ArticleDOI
TL;DR: It is shown that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent, which made it possible to formulate a variational principle for the force-free magnetic fields.
Abstract: where A represents the magnetic vector potential, is an integral of the hydromagnetic equations. This -integral made it possible to formulate a variational principle for the force-free magnetic fields. The integral expresses the fact that motions cannot transform a given field in an entirely arbitrary different field, if the conductivity of the medium isconsidered infinite. In this paper we shall show that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent. These integrals, as we shall presently verify, are I2 =fbHvdV, (2)

1,858 citations