scispace - formally typeset
Search or ask a question
Author

Carri J. LeRoy

Other affiliations: Northern Arizona University
Bio: Carri J. LeRoy is an academic researcher from The Evergreen State College. The author has contributed to research in topics: Plant litter & Ecosystem. The author has an hindex of 20, co-authored 51 publications receiving 3079 citations. Previous affiliations of Carri J. LeRoy include Northern Arizona University.


Papers
More filters
Journal ArticleDOI
TL;DR: This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.
Abstract: Can heritable traits in a single species affect an entire ecosystem? Recent studies show that such traits in a common tree have predictable effects on community structure and ecosystem processes. Because these 'community and ecosystem phenotypes' have a genetic basis and are heritable, we can begin to apply the principles of population and quantitative genetics to place the study of complex communities and ecosystems within an evolutionary framework. This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.

1,034 citations

Journal ArticleDOI
01 Mar 2008-Ecology
TL;DR: It is suggested that variation in above- and belowground traits of individual plant genotypes can alter soil microbial dynamics, and suggests that further investigations of the evolutionary implications of genetic feedbacks are warranted.
Abstract: Although soil microbial communities are known to play crucial roles in the cycling of nutrients in forest ecosystems and can vary by plant species, how microorganisms respond to the subtle gradients of plant genetic variation is just beginning to be appreciated. Using a model Populus system in a common garden with replicated clones of known genotypes, we evaluated microbial biomass and community composition as quantitative traits. Two main patterns emerged. (1) Plant genotype influenced microbial biomass nitrogen in soils under replicated genotypes of Populus angustifolia ,F 1, and backcross hybrids, but not P. fremontii. Genotype explained up to 78% of the variation in microbial biomass as indicated by broad-sense heritability estimates (i.e., clonal repeatability). A second estimate of microbial biomass (total phospholipid fatty acid) was more conservative and showed significant genotype effects in P. angustifolia and backcross hybrids. (2) Plant genotype significantly influenced microbial community composition, explaining up to 70% of the variation in community composition within P. angustifolia genotypes alone. These findings suggest that variation in above- and belowground traits of individual plant genotypes can alter soil microbial dynamics, and suggests that further investigations of the evolutionary implications of genetic feedbacks are warranted.

334 citations

Journal ArticleDOI
TL;DR: Findings from a meta-analysis examining the strength of the effects of plant genetic introgression and genotypic diversity across individual, community and ecosystem levels are presented with the goal of synthesizing the patterns to date.
Abstract: Using two genetic approaches and seven different plant systems, we present findings from a meta-analysis examining the strength of the effects of plant genetic introgression and genotypic diversity across individual, community and ecosystem levels with the goal of synthesizing the patterns to date. We found that (i) the strength of plant genetic effects can be quite high; however, the overall strength of genetic effects on most response variables declined as the levels of organization increased. (ii) Plant genetic effects varied such that introgression had a greater impact on individual phenotypes than extended effects on arthropods or microbes/fungi. By contrast, the greatest effects of genotypic diversity were on arthropods. (iii) Plant genetic effects were greater on above-ground versus below-ground processes, but there was no difference between terrestrial and aquatic environments. (iv) The strength of the effects of intraspecific genotypic diversity tended to be weaker than interspecific genetic introgression. (v) Although genetic effects generally decline across levels of organization, in some cases they do not, suggesting that specific organisms and/or processes may respond more than others to underlying genetic variation. Because patterns in the overall impacts of introgression and genotypic diversity were generally consistent across diverse study systems and consistent with theoretical expectations, these results provide generality for understanding the extended consequences of plant genetic variation across levels of organization, with evolutionary implications.

257 citations

Journal ArticleDOI
TL;DR: This study shows that leaf litter diversity has the capacity to affect in-stream decomposition rates and stream invertebrates, but that these effects depend on both litter quality and stream characteristics.
Abstract: SUMMARY 1. We examined the relative importance of litter quality and stream characteristics in determining decomposition rate and the macroinvertebrate assemblage living on autumnshed leaves. 2. We compared the decomposition rates of five native riparian tree species (Populus fremontii, Alnus oblongifolia, Platanus wrightii, Fraxinus velutina and Quercus gambelii) across three south-western streams in the Verde River catchment (Arizona, U.S.A.). We also compared the decomposition of three- and five-species mixtures to that of single species to test whether plant species diversity affects rate. 3. Decomposition rate was affected by both litter quality and stream. However, litter quality accounted for most of the variation in decomposition rates. The relative importance of litter quality decreased through time, explaining 97% of the variation in the first week but only 45% by week 8. We also found that leaf mixtures decomposed more quickly than expected, when all the species included were highly labile or when the stream environment led to relatively fast decomposition. 4. In contrast to decomposition rate, differences in the invertebrate assemblage were more pronounced across streams than across leaf litter species within a stream. We also found significant differences between the invertebrate assemblage colonising leaf mixtures compared with that colonising pure species litter, indicating non-additive properties of litter diversity on stream invertebrates. 5. This study shows that leaf litter diversity has the capacity to affect in-stream decomposition rates and stream invertebrates, but that these effects depend on both litter quality and stream characteristics.

226 citations

Journal ArticleDOI
TL;DR: Data suggest that CT may play an underappreciated adaptive role in regulating nutrient dynamics in ecosystems and demonstrate that a holistic perspective from genes-to-ecosystems is a powerful approach for elucidating complex ecological interactions and their evolutionary implications.
Abstract: Research that connects ecosystem processes to genetic mechanisms has recently gained significant ground, yet actual studies that span the levels of organization from genes to ecosystems are extraordinarily rare. Utilizing foundation species from the genus Populus, in which the role of condensed tannins (CT) has been investigated aboveground, belowground, and in adjacent streams, we examine the diverse mechanisms for the expression of CT and the ecological consequences of CT for forests and streams. The wealth of data from this genus highlights the importance of form and function of CT in large-scale and long-term ecosystem processes and demonstrates the following four patterns: (1) plantspecific concentration of CT varies as much as fourfold among species and individual genotypes; (2) large within-plant variation in CT occurs due to ontogenetic stages (that is, juvenile and mature), tissue types (that is, leaves versus twigs) and phenotypic plasticity in response to the environment; (3) CT have little consistent effect on plant‐herbivore interactions, excepting organisms utilizing woody tissues (that is, fungal endophytes and beaver), however; (4) CT in plants consistently slow rates of leaf litter decomposition (aquatic and terrestrial), alter the composition of heterotrophic soil communities (and some aquatic communities) and reduce nutrient availability in terrestrial ecosystems. Taken together, these data suggest that CT may play an underappreciated adaptive role in regulating nutrient dynamics in ecosystems. These results also demonstrate that a holistic perspective from genesto-ecosystems is a powerful approach for elucidating

176 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fundamental role of the biofilm matrix is considered, describing how the characteristic features of biofilms — such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials — all rely on the structural and functional properties of the matrix.
Abstract: Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.

3,277 citations

Journal ArticleDOI
TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Abstract: The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

2,332 citations

Journal ArticleDOI
TL;DR: A review of the literature reveals significant effects of genetic diversity on ecological processes such as primary productivity, population recovery from disturbance, interspecific competition, community structure, and fluxes of energy and nutrients.
Abstract: Understanding the ecological consequences of biodiversity is a fundamental challenge. Research on a key component of biodiversity, genetic diversity, has traditionally focused on its importance in evolutionary processes, but classical studies in evolutionary biology, agronomy and conservation biology indicate that genetic diversity might also have important ecological effects. Our review of the literature reveals significant effects of genetic diversity on ecological processes such as primary productivity, population recovery from disturbance, interspecific competition, community structure, and fluxes of energy and nutrients. Thus, genetic diversity can have important ecological consequences at the population, community and ecosystem levels, and in some cases the effects are comparable in magnitude to the effects of species diversity. However, it is not clear how widely these results apply in nature, as studies to date have been biased towards manipulations of plant clonal diversity, and little is known about the relative importance of genetic diversity vs. other factors that influence ecological processes of interest. Future studies should focus not only on documenting the presence of genetic diversity effects but also on identifying underlying mechanisms and predicting when such effects are likely to occur in nature.

1,412 citations

Journal ArticleDOI
01 Mar 1994-Nature
TL;DR: It is clear that the above can lead to confusion when scientists of different countries are trying to communicate with each other, so an internationally recognized system of naming organisms is created.
Abstract: It is clear that the above can lead to confusion when scientists of different countries are trying to communicate with each other. Another example is the burrowing rodent called a gopher found throughout the western United States. In the southeastern United States the term gopher refers to a burrowing turtle very similar to the desert tortoise found in the American southwest. One final example; two North American mammals known as the elk and the caribou are known in Europe as the reindeer and the elk. We never sing “Rudolph the Red-nosed elk”! Confused? This was the reason for creating an internationally recognized system of naming organisms. To avoid confusion, living organisms are assigned a scientific name based on Latin or Latinized words. The English sparrow is Passer domesticus or Passer domesticus (italics or underlining these two names is the official written representation of a scientific name). Using a uniform naming system allows scientists from all over the world to recognize exactly which life form a scientist is referring to. The naming process is called the binomial system of nomenclature. Passer is comparable to a surname and is called the genus, while domesticus is the specific or species name (like your given name) of the English sparrow. Now scientists can give all sparrow-like birds the genus Passer but the species name will vary. All similar genera (plural for genus) can be grouped into another, “higher” category (see below). Study the following for a more through understanding of taxonomy. Taxonomy Analogy Kingdom: Animalia Country

1,305 citations